
CSE 123 Summer 2025LEC 02: Abstract Classes

CSE 123
L E C 0 2

Questions during Class?

Raise hand or send here

sli.do #cse123

Abstract Classes

Talk to your neighbors:
Coffee or tea? Or something else?

BEFORE WE START

Instructor: Ziao Yin
Nichole Trien Packard Eeshani Chris

CSE 123 Summer 2025LEC 02: Abstract Classes

Announcements

• Creative Project 0 due tonight, Wed Jul 2 at 11:59pm!
- See generic Creative Project rubric posted on website

• Programming Assignment 0 will be released tomorrow, Thurs Jul 3
- Focused on inheritance and abstract classes

https://edstem.org/us/courses/79685/lessons/140569/slides/795564

CSE 123 Summer 2025LEC 02: Abstract Classes

Lecture Outline

• Polymorphism Review

- Declared vs. Actual Type

- Compiler vs. Runtime Errors

• Abstract Classes Review

• Pre/Post conditions and commenting

CSE 123 Summer 2025LEC 02: Abstract Classes

Review: Is-a Relationships

Animal

Mammal

Dog Cat

Fish Birds Reptile Amphibian

CSE 123 Summer 2025LEC 02: Abstract Classes

Polymorphism
• DeclaredType x = new ActualType()

- All methods in DeclaredType can be called on x

- We’ve seen this with interfaces (List<String> vs. ArrayList<String>)

- Can also be to inheritance relationships

Animal[] arr = {new Dog(), new Cat(), new Bear()};

for (Animal a : arr) {

 a.feed();

}

CSE 123 Summer 2025LEC 02: Abstract Classes

Compiler vs. Runtime Errors
• DeclaredType x = new ActualType()

- At compile time, Java only knows DeclaredType

- Compiler error (CE): trying to call a method that isn’t present

 Animal a = new Dog();

 a.bark(); // No bark() -> CE

- Can cast to change the DeclaredType of an object

 ((Dog) a).bark(); // No more CE

- Runtime error (RE): attempting to cast to an invalid DeclaredType*

 Animal a = new Fish();

 ((Dog) a).bark(); // Can’t cast -> RE

- Order matters! Compilation before runtime

CSE 123 Summer 2025LEC 02: Abstract Classes

Declared Type and Actual Type

Dog bucky = new Dog("Bucky");Animal bucky = new Dog("Bucky");

DeclaredType varName = new ActualType(…);

Declared Type: Animal
Actual Type: Dog

Can call methods that makes sense for EVERY Animal
If Dog overrides a method, uses the Dog version

Declared Type: Dog
Actual Type: Dog

Can call methods that makes sense for EVERY Dog
If Dog overrides a method, still uses the Dog version

CSE 123 Summer 2025LEC 02: Abstract Classes

Compiler vs. Runtime Errors

CSE 123 Summer 2025LEC 02: Abstract Classes

Inheritance and Method Calls

When compiling:

Can we guarantee that the method exists
for the declared type?

Does the declared type or one of its super
classes contain a method of that name?

If not… Compile Error!

Animal bucky = new Dog();
bucky.bark();

Compiling:
Look this way for

bark

Declared Type

Object

Animal

Dog Fish

ex
te

n
d

s
“i

s
a”

In this example:

When compiling, neither Animal nor Object have a bark
method, so we have a compile error!

CSE 123 Summer 2025LEC 02: Abstract Classes

Overrides and Method Calls

Object

Animal

Dog Fish

ex
te

n
d

s
“i

s
a”

When running:

Use the most specific version of the method
call starting from the actual type.

Start from the actual type, then go “up” to
super classes until you find the method. Run
that first-discovered version.

Actual Type

Animal bucky = new Dog();
bucky.feed();

Running:
Look this way for feed

Use the first
implementation found

In this example:

If the Dog class overrides feed, then we’ll use the
implementation in Dog. Otherwise we’ll use the one in
Animal

CSE 123 Summer 2025LEC 02: Abstract Classes

Actual Type

Casting and Method Calls

Object

Animal

Dog Fish

Compiling:
From cast-to type

Look this way
for bark

Running:
From actual type

Look this way
for cast-to type

Animal bucky = new Dog();
((Dog) bucky).bark();

When compiling:

Can we guarantee that the method exists
for the Cast-to type?

Does the Cast-to type or one of its super
classes contain a method of that name?

If not… Compile Error!
When Running:

Check that the Cast-to Type is either the
Actual Type, or one of its super classes

Cast-to Type

This example has no error

CSE 123 Summer 2025LEC 02: Abstract Classes

Actual Type

Casting and Method Calls

Object

Animal

Dog Fish

Compiling:
From cast-to type

Look this way
for bark

Running:
From actual type

Look this way
for cast-to type

Animal bucky = new Fish();
((Dog) bucky).bark();

When compiling:

Can we guarantee that the method exists
for the Cast-to type?

Does the Cast-to type or one of its super
classes contain a method of that name?

If not… Compile Error!
When Running:

Check that the Cast-to Type is either the
Actual Type, or one of its super classes

Cast-to Type

This example has a runtime error

CSE 123 Summer 2025LEC 02: Abstract Classes

Practice

What results from the following code being
executed? (1)

Animal bucky = new Dog();
bucky.bark();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Summer 2025LEC 02: Abstract Classes

Practice

What results from the following code being
executed? (2)

Animal bucky = new Dog();
((Dog) bucky).bark();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Summer 2025LEC 02: Abstract Classes

Practice

What results from the following code being
executed? (3)

Animal bucky = new Dog();
((String) bucky).meow();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Summer 2025LEC 02: Abstract Classes

Practice

What results from the following code being
executed? (4)

Animal bucky = new Dog();
((Reptile) bucky).slither();

A.Compiler Error

B.Runtime Error

C.Compiles and runs without error

CSE 123 Summer 2025LEC 02: Abstract Classes

Lecture Outline

• Polymorphism Review

- Declared vs. Actual Type

- Compiler vs. Runtime Errors

• Abstract Classes Review

• Pre/Post conditions and commenting

CSE 123 Summer 2025LEC 02: Abstract Classes

Abstract Classes

• Mixture of Interfaces and Classes
- Interface similarities:

- Can contain (abstract) method declarations

- Can’t be instantiated

- Class similarities:
- Can contain method implementations

- Can have fields

- Can have constructors

• Is there identical / nearly similar behavior between classes that
shouldn’t inherit from one another?

Interfaces

Abstract
Classes

Classes

CSE 123 Summer 2025LEC 02: Abstract Classes

Shape / Square / Circle Example
The starter code contains Shape, Square, and Circle classes similar to the pre-class work, as well as a

Client that prints out a couple of shapes.

• Add an abstract getName method to the Shape.

- Add implementations of getName to Square and Circle that return "Square" and "Circle".

• Add a method isEmpty to Shape that tells you whether the shape is empty (has zero area) or not.

- Hint: you will need to call getArea, but it may not immediately work…

• Implementing isEmpty by calling getArea works fine as is, but suppose we wanted to implement it

in Circle directly. How could we do this just by looking at the fields of the Circle? Implement it this

way by overriding isEmpty in Circle.

• Override toString in Shape to return a similar message to what the Client prints in the starter

code:

- Hint: your toString can call abstract methods!

• Rewrite the Client class to use the new toString on shapes.

CSE 123 Summer 2025LEC 02: Abstract Classes

Advanced OOP Summary

• Allow us to define differing levels of abstraction
- Interfaces = high-level specification

- What behavior should this type of class have

- Abstract classes = shared behavior + high-level specification

- Classes = individual behavior implementation

• Inheritance allows us to share code via “is-a” relationships
- Reduce redundancy / repeated code & enable polymorphism

- Still might not be the “best” decision!

- Interfaces extend other interfaces

- (abstract) classes extend other (abstract) classes

Interfaces

Abstract
Classes

Classes

Abstract

Concrete

• You’re now capable of designing some pretty complex systems!

CSE 123 Summer 2025LEC 02: Abstract Classes

Design in the “real world”

• In this course, we’ll always give you expected behavior of the classes
you write

- Often not the case when programming for real

- Clients don’t really know what they want (but programmers don’t either)

• My advice:
- Clarify assumptions before making them (do I really want this functionality?)

- There’s no one right answer
- Weigh the options, make a decision, and provide explanation

- Iterative development: make mistakes and learn from them

- Be receptive to feedback and be willing to change your mind

CSE 123 Summer 2025LEC 02: Abstract Classes

Interface versus Implementation

• Interface: what something should do

• Implementation: how something is done

• These are different!

• Big theme of CSE 123:

 choose between different implementations of same interface

	Slide 1: Abstract Classes
	Slide 2: Announcements
	Slide 3: Lecture Outline
	Slide 4: Review: Is-a Relationships
	Slide 5: Polymorphism
	Slide 6: Compiler vs. Runtime Errors
	Slide 7: Declared Type and Actual Type
	Slide 8: Compiler vs. Runtime Errors
	Slide 9: Inheritance and Method Calls
	Slide 10: Overrides and Method Calls
	Slide 11: Casting and Method Calls
	Slide 12: Casting and Method Calls
	Slide 13: What results from the following code being executed? (1)
	Slide 14: What results from the following code being executed? (2)
	Slide 15: What results from the following code being executed? (3)
	Slide 16: What results from the following code being executed? (4)
	Slide 17: Lecture Outline
	Slide 18: Abstract Classes
	Slide 19: Shape / Square / Circle Example
	Slide 20: Advanced OOP Summary
	Slide 21: Design in the “real world”
	Slide 22: Interface versus Implementation

