
CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

CSE 123
L E C 1 1

Questions during Class?

Raise hand or send here

sli.do #cse123

Binary Tree Modification;
Binary Search Trees

Talk to your neighbors:

What’s your favorite English word?
What page is it on in the dictionary?

BEFORE WE START

TAs:

Instructor: Ziao

Trien Nichole Chris Packard Eeshani

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Lecture Outline

• Announcements

• Binary Tree Modification

• Binary Search Review

• Binary (Search) Trees Review

• More runtime!

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Announcements

• Quiz 2 Completed!

• Creative Project 2 due today (8/6) at 11:59pm

• Creative Project 3 out tomorrow, due Friday, 8/13 at 11:59pm

• Resubmission Cycle 4 is open, due on Friday, 8/08 at 11:59pm
- C1, P1, P2 eligible

- Reminder: In R7, all assignments will be eligible!

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Lecture Outline

• Announcements

• Binary Tree Modification

• Binary Search Review

• Binary (Search) Trees Review

• More runtime!

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Modifying Binary Trees

• Like linked lists, cannot modify nodes
- Because data field is final (there are good reasons for this)

• Will need to create and insert new nodes

• Use x = change(x), usually 3 times
- overall root (in public method)

- left subtree

- right subtree

• Order might matter!
- Does operation on root depend on children?

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Lecture Outline

• Announcements

• Binary Tree Modification

• Binary Search Review

• Binary (Search) Trees Review

• More runtime!

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Looking through a dictionary

• Assuming a sorted order of
elements to search through
list

• Suppose you're looking for
a specific element target

• Return the index of the
given target, or -1 if it's
not in the list

begin with the dictionary, from the first to last word,
 looking for target

search(dictionary, left, right, target):
 if there are no more words to look through
 give up
 else
 pick a midpoint between left and right
 pick the word at that midpoint
 if target is that word
 found it!
 else if target comes before that word
 search(dictionary, left, midpoint-1, target)
 else (target comes after that word)
 search(dictionary, midpoint 1, right, target)

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Binary Search

• Assuming a sorted order of
elements to search through
list

• Suppose you're looking for
a specific element target

• Return the index of the
given target, or -1 if it's
not in the list

begin with search(list, 0, list.size() – 1, target)

search(list, left, right, target):
 if (left > right):
 return -1
 else:
 mid = (left + right) / 2
 if (target == list[mid]):
 return mid;
 else if (target < list[mid]):
 return search(list, left, mid – 1, target)
 else
 return search(list, mid + 1, right, target)

-5 4 18 23 30 49 55 108 184

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Lecture Outline

• Announcements

• Binary Tree Modification

• Binary Search Review

• Binary (Search) Trees Review

• More runtime!

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Example Tree: contains

4

2 6

1 3 5 7

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Binary Trees [Review]
• We’ll say that any Binary Tree falls into one of the following categories:

Empty tree
root == null

Node w/ two subtrees
root != null

root.left / root.right = Tree

This is a recursive definition! A tree is either empty or a node with two
more trees!

null

1

Tree Tree

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Binary Search Trees (BSTs)
• We’ll say that any Binary Search Tree falls into the following categories:

Empty BST
root == null

Node w/ two subBSTs
root != null

root.left / root.right = Tree

max(root.left) < x && min(root.right) > x

null

x

BST BST

< x > x

Note that not all Binary Trees are Binary Search Trees

For BSTs in this
class, we'll make
the simplifying
assumption of
no duplicates

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Why BSTs?
• Our IntTree implementation to contains(int value)

• Which direction(s) do we travel if root.data != value?
- Both left and right

• In a Binary Search Tree, should we check both sides?
- Remember, additional constraint: max(root.left) < root.data &&

 min(root.right) > root.data

private boolean contains(int value, IntTreeNode root) {
 if (root == null) {
 return false;
 } else {
 return root.data == value ||
 contains(value, root.left) ||
 contains(value, root.right);
 }
}

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Lecture Outline

• Announcements

• Binary Tree Modification

• Binary Search Review

• Binary (Search) Trees Review

• More runtime!

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

BSTs & Runtime (1)
• Contains operation on a balanced BST runs in O(log(n))

- Leverages removing half of the values at each step

- New runtime class unlocked!

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

Example Tree: contains for balanced BST

4

2 6

1 3 5 7

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

BSTs & Runtime (2)
• Contains operation on a balanced BST runs in O(log(N))

- Leverages removing half of the values at each step

- New runtime class unlocked!

• Comparison between data structures:

Operation ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) O(log(N)) ?

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

BSTs & Runtime (3)
• Contains operation on a balanced BST runs in O(log(N))

- Leverages removing half of the values at each step

- New runtime class unlocked!

• Comparison between data structures:

Operation ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) O(N)

O(log(N)) runtime is only guaranteed for BALANCED BSTs. If your tree
isn’t balanced, we see O(N) runtime!

CSE 123 Summer 2025LEC 11: Binary Tree Modification; Binary Search Trees

BSTs In Java
• Self-balancing BST implementations (AVL / Red-black) exist

- AVL better at contains, Red-black better at adding / removing

• Both the TreeMap / TreeSet implementations use self-balancing BSTs
- Determines said ordering via the Comparable interface / compareTo method

- Printing out shows natural ordering – preorder traversal

• Complete table comparing data structures:

Operation ArrayList LinkedList TreeSet

contains(x) O(N) O(N) O(log(N))

add(x) O(1*) O(1) O(log(N)*)

remove(x) O(N) O(N) O(log(N)*)

*It’s slightly more complicated but we’ll leave that for a higher level course

	Default Section
	Slide 1: Binary Tree Modification; Binary Search Trees
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: Modifying Binary Trees
	Slide 6: Lecture Outline
	Slide 7: Looking through a dictionary
	Slide 8: Binary Search
	Slide 9: Lecture Outline
	Slide 10: Example Tree: contains
	Slide 11: Binary Trees [Review]
	Slide 12: Binary Search Trees (BSTs)
	Slide 13: Why BSTs?
	Slide 14: Lecture Outline
	Slide 15: BSTs & Runtime (1)
	Slide 16: Example Tree: contains for balanced BST
	Slide 17: BSTs & Runtime (2)
	Slide 18: BSTs & Runtime (3)
	Slide 19: BSTs In Java

