
Programming Assignment 3: Spam Classifier

� Background and Structure

Seemingly, everyone is talking about Machine Learning and Artificial Intelligence these days. Artificial
Intelligence (AI), a subfield of Computer Science, is concerned with enabling computers to perform
tasks that require rational decision-making. As one of the oldest areas of research in the discipline, AI
has played a significant role in driving technological advancements since the 1950s. On the other
hand, machine Learning (ML) is a subfield of AI that uses trends from previous examples to make
predictions about unseen data using statistical methods. ML algorithms are not magic — they simply
guess the most likely outcome based on many, many previous examples. This means that any ML
algorithm's predictions are only as good as the data it was built upon, which can easily be
biased in some way, or just plain wrong.

As computer scientists, it is important to be able to recognize and advocate for appropriate uses of
these models, regardless of how miraculous they may seem to the public.

Terminology
There are several machine learning terms used throughout the specification for this assignment that
we would like to formally define before you begin. It might even be worth having this slide open in
another tab while reading the assignment to make sure you fully understand the terms being given to
you.

Model: The actual program that makes probabilistic classifications on provided inputs.
Training: Models are "trained" on previously gathered datasets to make future predictions.
Label: How data is classified after being run through the model. In our tree, leaf nodes will
house classification labels.
Feature: Important aspects/characteristics of our dataset that we use in classification that
correspond to a numeric value. Typically, the hardest part of a machine learning algorithm is
determining how to take input data and "featurize" it into something a computer can
understand

Ex: turning a sentence or image into a series of numbers.
Threshold: The numeric value we compare a feature against at any branch node within our
classifier. In our tree, if the current input is less than the threshold we should go left. If it's
greater than or equal to, we should go right.

Structure
Your goal for this assignment is to implement a text-based classification tree, a simplistic machine-

Expand

learning model that predicts a label when given some text-based data. In this section, we'll familiarize
you with the classifier's visual structure. Additionally, this assignment involves a lot of Machine
Learning (ML) terminology. For clarity, these terms are underlined within this specification

Below is a visual example of what a classification tree might look like for classifying spam emails:

As seen above, in our classification tree the leaf nodes represent our predictive labels ("Spam" or
"Ham" – a funny way of writing not spam) while the branch nodes represent decision nodes that
contains some feature of our data and a threshold to determine what decision to make. For this
assignment, the feature will be the word probability of a certain word.

As mentioned earlier, you will be given text-based data to classify. This may include, but is not limited
to, emails, academic papers, or even movie reviews! Throughout this assignment, each piece of text
will be called text blocks, and we'll represent them with the TextBlock class. (more on that in the
Implementation Requirements slide).

To classify a given text block, you start at the root of the tree and determine whether the
corresponding feature found in the input text block falls to the left or right of the current node's
threshold (determined by < or >=). Then, you travel in the corresponding direction. Repeating this
process will eventually lead you to a classification for your input.

Below, we'll trace through the classification of a sample input with our example model
shown above.

These classification trees may not always be the same, and may not always operate on identifying

Expand

"spam" or "ham" . Below is an alternative example of what a potential classification tree could look
like for Pokémon types based on text from Pokedex entries.

To solidify the different tree behaviors, we'll trace through an input much like the example
above.

This is what you'll be implementing in this assignment! Specifically, you'll be creating a classification
tree that's able to predict a label given some text. This could range from predicting "Spam" or "Ham"
given the contents of an email (as shown above) to predicting the author of a given Federalist Paper!

� Training a Classification Tree

Expand

One of our goals is to be able to "train" our model from previously gathered data in order to make
future predictions.

In the previous slide, we magically arrived at a constructed classification tree. In this section, we'll
explain the algorithm to train a new model. Throughout this section, we'll be using the following file
(which can be found in spec_example.csv):

Category,Message
Ham,here here here four five six seven eight nine ten eleven tweleve thirteen office you
Spam,one two three four five six seven eight nine ten eleven tweleve thirteen office you
Spam,one two three four five six seven eight nine ten eleven tweleve thirteen office you
Spam,here here here office office office office office office office office office office office off

Note the structure of this .csv file: the second column contains the data, and the first column
contains the expected label for that piece of data. For ease of implementation, this file will
automatically be parsed for you (using the provided DataLoader and CsvReader classes) and passed
into your constructor as two lists.

public Classifier(List<TextBlock> data, List<String> labels)

Step 1: Initialize our Model

Since the classification tree is empty at the beginning, we need to add an initial data point so it can
start making classifications. This algorithm processes training examples in order, starting from index
0 . So we begin by inserting the first data-label pair (at index 0) into the tree.

We also want to store the TextBlock data along with its label in the tree’s leaves. This way, the
classification tree can use previous examples to help make decisions when creating new nodes. If this
isn’t entirely clear yet, that’s okay. We will see this action later in the algorithm explanation.

Expand to see the visualization:

Step 2: Classify Data

Now that we have a classification tree, we can start to classify inputs! Unfortunately, with only one
point of data, our model doesn't seem very useful — currently, it classifies every input as Ham . What
if we try to classify a piece of data that has an expected label of Spam ?

Expand

Expand

To handle this, we proceed to the next step of the algorithm: we process the next index. We'll start
at the top of the tree and traverse down to find the label our model will predict for
data.get(index) . Now, we check whether our model's prediction matches the expected label.

If the prediction is correct, then our model is accurate up to that point, and we have nothing to
do!
If the prediction is incorrect, we need to update the model — this is the "learning" part. We
modify the tree so that it can correctly classify this new example in the future.

Expand to see visualization:

Step 2a: Updating our Model

Typically, a large part of the complexity in building a classification tree is determining how to
partition the data in case of incorrect predictions. There are many potential ways to accomplish this,
but we'll be taking this approach:

Call the findBiggestDifference method on the current TextBlock input and the previously
stored one (from the misclassified label node).

findBiggestDifference identifies and returns the feature with the largest difference
in word probabilities between the two TextBlock s.

We then compute the midpoint between the two feature values in the TextBlock s and use it
as the threshold for a new decision node.
The decision node should be placed where the original label node currently is.
After the new decision node is constructed, the original label node and current input should be
placed appropriately.

This step is why we needed to store the TextBlock along with its labels in the tree. Otherwise,
without it, we would be unable to create a new feature for when our model is inaccurate!

NOTE: We are only ever modifying the leaves of our tree!

Expand to see visualization:

SIDE NOTE: This algorithm requires you to keep track of both the label and the TextBlock datapoint first
assigned to this label within every leaf node created in this constructor, as without the previous TextBlock
datapoint we would be unable to create a new decision node! Ideally we'd like to keep track of all input data
that falls under a specific leaf node such that when creating a new decision node, we can make sure it's valid
for our entire training dataset. For simplicity, only worry about the first datapoint used to create a label node.

Step 3: Repeat

Expand

Repeat step 2 for the rest of the list until we've finished processing the list. At that point, our model is
fully trained on our data and is able to predict the right label for the data we input.

Expand to see visualization:

� Implementation Requirements

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Define data structures to represent compound and complex data
Write a functionally correct Java class to represent a binary tree.
Write classes that are readable and maintainable, and that conform to provided guidelines for
style, implementation, and performance.
Produce clear and effective documentation to improve comprehension and maintainability of
programs, methods, and classes.

System Structure
Below, we describe the provided TextBlock class that will be used in your implementation of
Classifier.java . You do not need to (and should not) make changes to this class, but your code
will be a client of it. Make sure to understand the purpose of this class and read through the provided
documentation.

TextBlock.java

Text data that gets classified via the classifier. It defines four public methods:

public double get(String word)

Returns the corresponding word probability for the given word.
Although there are classification trees where it would make sense to work with other
kinds of data that should return something else (imagine a color feature within a real
estate dataset), since our implementation is only dealing with thresholds for word
probabilities, this must return a double.

public Set<String> getFeatures()

Returns a set of all features from this text block.

public boolean containsFeature(String word)

Returns true if this dataset contains the given word. False otherwise.

public String findBiggestDifference(TextBlock other)

Returns the word with the biggest difference in probability between this TextBlock and the
other TextBlock .

Note that there is no difference between calling a.findBiggestDifference(b) and
b.findBiggestDifference(a) . Both will return the same string.

Required Class

NOTE: To earn a grade higher than N on the Behavior and Concepts dimensions of this assignment, your core
algorithms for each method must be implemented recursively. You will want to utilize the public-
private pair technique discussed in class. You are free to create any helper methods you like, but the core
of your implementations must be recursive.

Classifier.java

In this assignment, you implement your classification tree by creating a class called
Classifier.java . You are provided with a client program that handles user interaction and calls
your Classifier methods in order to train/load a model and classify data.

public Classifier(Scanner input)

Load the classifier from a file connected to the given Scanner . The format of the input file
should match that of the save method (described below).

Importantly, in this method, you should only read data from the file using nextLine and
convert it to the appropriate format using Double.parseDouble .

This method should throw an IllegalArgumentException if the provided input is null and an
IllegalStateException if the tree is still empty after processing input .

public Classifier(List<TextBlock> data, List<String> labels)

Create and train a classifier from the input data and corresponding labels.
The lists should be processed in parallel in increasing order (i.e., process index 0, then 1, then 2,
etc), where the label corresponding to data.get(<index>) can be found at
labels.get(<index>) . The general construction process should be accomplished via the
algorithm described in Training a Classification Tree slide.
This method should throw an IllegalArgumentException if any of the following cases are
met:

data or labels is null
data and labels are not the same size
data or labels is empty

HINT: This algorithm requires you to keep track of the initial TextBlock used to create the label node.
Without this initial TextBlock , we would be unable to create a new feature for when our model is inaccurate!
Keeping this in mind, what may be one of the fields needed in the ClassifierNode class?

public String classify(TextBlock input)

Given a piece of data, return the appropriate label that this classifier predicts.
This method should model the steps taken in the Background and Structure slide: at every
feature, evaluate our input data and determine if it's less than our threshold. If so,
continue left; otherwise, continue right. Repeat this process until a leaf node is reached.

If the parameter input is null, throw an IllegalArgumentException .

public void save(PrintStream output);

Saves this current classifier to the given PrintStream
For our classifier tree, this format should be pre-order. Every branch node will print
two lines of data, one for feature preceded by "Feature: " and one for threshold preceded
by "Threshold: ". For leaf nodes, you should only print the label. Examples of the
format can be seen below and through the trees directory in the start code.

If the parameter output is null, throw an IllegalArgumentException .

Provided Methods

Additionally, we have provided two other methods in Classifier.java :

public Map<String, Double> calculateAccuracy(List<TextBlock> data, List<String> labels)

Returns the model's accuracy on all labels in a provided testing dataset. This is useful to see
how well our model works, and what labels it is struggling with classifying correctly.

private static double midpoint(double one, double two)

Helper method to calculate the midpoint between two doubles.
HINT: This should be used in the Classifier(List<TextBlock>, List<String>)
constructor to calculate the midpoint!

ClassifierNode

As part of writing your Classifier class, you should also have a private static inner class called
ClassifierNode to represent the nodes of the tree. The contents of this class are up to you, but
must meet the following requirements:

You must have a single ClassifierNode class that can represent both features and labels —
you should not create separate classes for the different types of nodes.

You may find that since we are representing both features and labels in the same node
class, some fields may be unused at times. This is completely okay!

The ClassifierNode class must not contain any constructors or methods that are not used by
the Classifier class.
The fields of the ClassifierNode class must be public .

Expand

Expand

All data fields should be declared final as well. This does not include fields representing the
children of a node.

NOTE: You may get a variable ___ might not have been initialized error, in which case, you will have
to explicitly initialize the values for all final fields in your node class — even if you do not plan to utilize the
value.

File Format

The files that are both created by the save method and read by the Scanner constructor will follow
the same format. These files will contain a pair of lines to represent branch nodes and a single line to
represent leaf nodes in the Classifier . The first line in each branch node pair will start with
"Feature: " followed by the feature and the second line will start with "Threshold: " followed by the
threshold. Lines representing the leaf nodes will simply contain the label. The format of the file
should be a pre-order traversal of the tree.

For example, consider the following sample file (simple.txt):

Client Program & Visualization
We have provided you with a Client program to help test your implementation of the methods
within Classifier.java . The client can create binary trees from the provided .csv or .txt files
and test their accuracy. Note that in order to pass in these files, you should call them by
folderName/fileName . For example, trees/simple.txt .

Click "Expand" below to see sample executions of the client for different situations (user input is bold
and underlined).

1. This client visualization uses your Scanner constructor, calculateAccuracy() , and classify() .
The constructor loads a pre-trained model from a given text file. The following inputs allow us to test
its accuracy using the pre-set TEST_FILE (in this example, we initialized it in line 8 of Client.java
to "data/emails/test.csv") and use the model to predict labels for data points in a given .csv file.

NOTE: When saving the Scanner constructor, the contents of the file will be exactly the same as the input
.txt file used to initially load the pre-trained model.

2. This client visualization uses the Classifier constructor that takes in data and their
corresponding labels, calculateAccuracy() (implemented for you), and save() . You can follow the
pattern of inputs below to train the classification model using some train.csv file (this calls the

Expand

constructor Classifier(List<TextBlock>, List<String>) , retrieve testing accuracy (similar to
above), and save the trained model to a file so that it is in .txt format (like the sample input files in
the trees/ folder).

� TRAIN_FILE and TEST_FILE were set to "data/federalist_papers/train.csv" and
"data/federalist_papers/test.csv" respectively.

NOTE: After quitting, the saved file should be available for viewing in the console.

Testing
There are no formal testing requirements for this assignment. However, we'd encourage you to get
your hands dirty and see how well your model performs on the provided dataset / investigate the
output files to see if you can make sense of what the inner structure is!

� Implementation Guidelines

Your program should exactly reproduce the format and general behavior demonstrated in the Ed
tests. Our recommended approach is as follows:

1) Design your Node
First, design your node class that represents both the branch and leaf nodes within your classification
tree. Think about the information these nodes will be required to store based on the specification.
Remember that in our classification tree, branch nodes represent decisions and leaf nodes represent
classification labels.

NOTE: You may find that since we are representing both features and labels in the same node class, some
fields may be unused at times. This is completely okay!

Additionally, consider this hint for the two-list constructor:

HINT: This algorithm requires you to keep track of the initial TextBlock used to create the label node.
Without this initial TextBlock , we would be unable to create a new feature for when our model is inaccurate!
Keeping this in mind, what may be one of the fields needed in the ClassifierNode class?

2) Scanner Constructor
This constructor will be given a Scanner that contains data produced by save() . In other words, the
input for this constructor is the output you produced with save() .

Remember that this file is stored in pre-order format, where the feature and threshold for decision
nodes are stored on two lines within the file:

Feature: here
Threshold: 0.125

And labels are present without any additional formatting:

ham

You may assume that "Feature" and "Threshold" will never be labels within the input file.

Remember that you should only ever call .nextLine() on the provided Scanner. You might be
tempted to call nextLine() to read the feature then next() and nextDouble() to read the
threshold, but remember that mixing token-based reading and line-based reading is not so simple.
Assuming you are trying to retrieve the value of the threshold, here is an alternative that uses a

Expand

Expand

method called parseDouble in the Double class that allows you to use nextLine() :

double threshold = Double.parseDouble(input.nextLine().substring("Threshold: ".length()));

Lastly, you should throw an IllegalArgumentException is input is null and an
IllegalStateException if the tree is still empty after processing input .

HINT: It looks like we're processing lines and using that information to modify our tree. Keeping in mind our
recently learned concept, what pattern should we employ to help implement this constructor?

The tests for your Scanner constructor implementation are tied to a working save implementation. This
means that once you feel comfortable with your solution you should move onto the next part, and test for
both implementations at the same time.

Relevant Problem:

Section 13: Write Tree

3) save()
Once you've implemented the Scanner constructor, do the opposite! Namely, given an already
constructed classification tree, save it to the provided PrintStream via a pre-order traversal. Here
is the file format as copied from the Implementation Guidelines slide:

The files that are both created by the save method and read by the Scanner constructor will follow
the same format. These files will contain a pair of lines to represent branch nodes and a single line to
represent leaf nodes in the Classifier . The first line in each branch node pair will start with
"Feature: " followed by the feature and the second line will start with "Threshold: " followed by the
threshold. Lines representing the leaf nodes will simply contain the label. The format of the file
should be a pre-order traversal of the tree.

For example, consider the following sample file (simple.txt):

You should also throw an IllegalArgumentException is output is null.

At this point, test your Scanner constructor and save implementations. We don't recommend moving
forward in this assignment until these two methods are passing the provided tests.

Below, we've provided sample client input and output that should be your expected output at this
point (user input is bold and underlined):

Expand

Relevant Problems:

Lesson 10: printPreOrder
Section 13: Read Tree

4) classify()
Now we can start classifying! This method should traverse through the tree by evaluating decision
nodes on the input data to see whether or not the input falls below the current threshold. If so, the
traversal should continue into the left subtree; otherwise, the right. Once a leaf node is reached, the
corresponding label should be returned.

For a feature at a given decision node, think about how we could retrieve its word probability from
the input data.

Finally, you should throw an IllegalArgumentException is input is null

At this point, test your current implementation.We don't recommend moving forward runtil the classify
method is passing

NOTE: The classify tests are another way for us to test that your Scanner constructor implementation is
correct (since testing using save alone doesn't guarantee its correctness). If you find your classify tests
failing, but believe your classify implementation is correct, try taking a look at the logic inside your
Scanner constructor!

Below, we've provided sample client input and output that should be your expected output at this
point (user input is bold and underlined):

5) Two List Constructor
Finally, here is where we actually "train" our model, and this will likely be the most difficult part of
your implementation. First, you should make sure to throw the proper exceptions:

IllegalArgumentException if any of the following cases are met:
data or labels is null
data and labels are not the same size
data or labels is empty

Next, your implementation should follow the following algorithmic approach (copied from the
Training a Classification Tree):

Step 1: Initialize our Model

Expand

Expand

Since the classification tree is empty at the beginning, we need to add an initial data point so it can
start making classifications. This algorithm processes training examples in order, starting from index
0 . So we begin by inserting the first data-label pair (at index 0) into the tree.

We also want to store the TextBlock data along with its label in the tree’s leaves. This way, the
classification tree can use previous examples to help make decisions when creating new nodes. If this
isn’t entirely clear yet, that’s okay. We will see this action later in the algorithm explanation.

Expand to see the visualization:

Step 2: Classify Data

Now that we have a classification tree, we can start to classify inputs! Unfortunately, with only one
point of data, our model doesn't seem very useful — currently, it classifies every input as Ham . What
if we try to classify a piece of data that has an expected label of Spam ?

To handle this, we proceed to the next step of the algorithm: we process the next index. We'll start
at the top of the tree and traverse down to find the label our model will predict for
data.get(index) . Now, we check whether our model's prediction matches the expected label.

If the prediction is correct, then our model is accurate up to that point, and we have nothing to
do!
If the prediction is incorrect, we need to update the model — this is the "learning" part. We
modify the tree so that it can correctly classify this new example in the future.

Expand to see visualization:

Step 2a: Updating our Model

Typically, a large part of the complexity in building a classification tree is determining how to
partition the data in case of incorrect predictions. There are many potential ways to accomplish this,
but we'll be taking this approach:

Call the findBiggestDifference method on the current TextBlock input and the previously
stored one (from the misclassified label node).

findBiggestDifference identifies and returns the feature with the largest difference
in word probabilities between the two TextBlock s.

We then compute the midpoint between the two feature values in the TextBlock s and use it
as the threshold for a new decision node.
The decision node should be placed where the original label node currently is.
After the new decision node is constructed, the original label node and current input should be

Expand

Expand

Expand

placed appropriately.

This step is why we needed to store the TextBlock along with its labels in the tree. Otherwise,
without it, we would be unable to create a new feature for when our model is inaccurate!

NOTE: We are only ever modifying the leaves of our tree!

Expand to see visualization:

SIDE NOTE: This algorithm requires you to keep track of both the label and the TextBlock datapoint first
assigned to this label within every leaf node created in this constructor, as without the previous TextBlock
datapoint we would be unable to create a new decision node! Ideally we'd like to keep track of all input data
that falls under a specific leaf node such that when creating a new decision node, we can make sure it's valid
for our entire training dataset. For simplicity, only worry about the first datapoint used to create a label node.

Step 3: Repeat

Repeat step 2 for the rest of the list until we've finished processing the list. At that point, our model is
fully trained on our data and is able to predict the right label for the data we input.

Expand to see visualization:

HINT: This algorithm requires you to keep track of the initial TextBlock used to create the label node.
Without this initial TextBlock , we would be unable create a new feature for when our model is inaccurate!
Keeping this in mind, what may be one of the fields needed in the ClassifierNode class?

HINT: It looks like we're processing data and using that information to modify our tree. Keeping in mind our
recently learned concept, what pattern should we employ to help implement this constructor?

At this point, test your current implementation. Once these tests are passing, the assignment should be
completed. CONGRATULATIONS!!! � Make sure your code adheres to the Code Quality Guide and
Commenting Guide that we cover below!

Below, we've provided sample client input and output that should be your expected output at this
point (user input is bold and underlined). Note that TRAIN_FILE and TEST_FILE were set to
"data/federalist_papers/train.csv" and "data/federalist_papers/test.csv" respectively:

Relevant Problems:

Section 13: Remove Leaves in List
Section 13: Make Full

Try out your Classifier!
Once those methods are implemented, you'll have a working classifier! Try it out using Client.java
and see how well it does (what is its accuracy on our test data). Also, try saving your tree to a file and
see what it looks like. Is it creating decisions on features you'd expect? Why or why not? (Note that
this is a big area of current CS research called "explainable AI" — how can we interpret the results
from these massive probability models that are often difficult for humans to understand).

Code Quality

NOTE: To earn a grade higher than N on the Behavior and Concepts dimensions of this assignment, your core
algorithms for each method in Classifier must be implemented recursively. You will want to utilize
the public-private pair technique discussed in class. You are free to create any helper methods you like,
but the core of your implementations must be recursive.

As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements:

Constructors in inner class:
Any constructors created should be used.
When applicable, reduce redundancy by using the this() keyword to call another
constructor in the same class.
Clients of the class should never have to manually set fields of an object immediately
after construction (when possible) — there should be a constructor included for this
situation.

For example, if you were the implementor of the Point class:

Point coord = new Point(); // Poor usage of constructor
coord.x = 5; // ❌
coord.y = 7; // ❌

Point coord = new Point(5, 7); // � Correct usage of constructor

Methods:
All methods present in Classifier that are not listed in the specification must be
private .
Make sure that all parameters within a method are used and necessary.
Avoid unnecessary returns.

x = change(x) :
Similar to linked lists, do not "morph" a node by directly modifying fields (especially when
replacing a branch node with a leaf node or vice versa). Existing nodes can be rearranged

in the tree, but adding a new value should always be done by creating and inserting a new
node, not by modifying an existing one.
An important concept introduced in lecture was called x = change(x) . This idea is
related to the proper design of recursive methods that manipulate the structure of a
binary tree. You should follow this pattern when necessary when modifying your
trees.

Avoid redundancy:
If you find that multiple methods in your class do similar things, you should create helper
method(s) to capture the common code. As long as all extra methods you create are
private (so outside code cannot call them), you can have additional methods in your class
beyond those specified here.
Look out for including additional base or recursive cases when writing recursive code.
While multiple calls may be necessary, you should avoid having more cases than you
need. Try to see if there are any redundant checks that can be combined!

Data Fields:
Properly encapsulate your objects by making data fields in your Classifier class
private. (Fields in your ClassifierNode class should be public, following the pattern
from class.)
Avoid unnecessary fields; use fields to store important data of your objects, but not to
store temporary values only used in one place.
Fields should always be initialized inside a constructor or method, never at declaration.

Commenting
Each method should have a comment including all necessary information as described in
the Commenting Guide. Comments should be written in your own words (i.e., not copied
and pasted from this spec).
Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.
Continuing with the previous point, keep in mind that the client should not be aware of
what implementation strategy your class/methods utilize.

