
Programming Assignment 1: Mini-Git
[ArrayRepository]

Specification

Background
Version control systems are software features or programs designed to track changes to documents or
sets of documents over time. In most systems, each time changes are made to the documents being
tracked, a new version or revision is logged. Usually some additional information, called metadata, is
also tracked along with each revision. This metadata can include a timestamp for when the changes
were made, one or more authors of the changes, comments or notes about the changes, and/or
many other types of information. Version control systems also typically provide a way to review the
history of the documents being tracked, along with operations to revert to previous points in history if
necessary. The history tracking features of Google Docs are an example of a version control system.

Version control systems that are designed specifically for tracking source code for computer
programs are often called source control systems and may include additional features useful for
tracking source code. These features may include associating certain types of files with particular
programming languages or running automated tests each time a new revision is created. One
popular source control system in wide use today is Git, which was developed by Linus Torvalds (who
also created the Linux operating system) and initially released in 2005.

In this assignment, we will implement our own, simplified version of a version control system similar
to Git.

NOTE: Version control systems typically need to address at least two significant problems: how to track and
manage the metadata for the revisions that make up the version history, and how to represent and track the
actual changes to the documents themselves. We will focus only on the first problem (tracking metadata and
history); for more information on how Git handles tracking the changes, see the free, online book Pro Git.

System Structure
In our system, as in Git, a set of documents and their histories are referred to as a repository. Each
revision within a repository is referred to as a commit. You will implement a class called
ArrayRepository that supports a subset of the operations supported by real Git repositories. (We
will not be dealing with features such as branching or remote repositories. We will assume histories
are fairly linear and mostly take place in a single, local repository.)

Expand

We will represent commits with following provided class. You must not modify this class in any
way.

Each commit consists of a unique identifier, a message describing the changes, and the general time
the commit was made. In our representation, identifiers will be strings.

NOTE: You may see some code you're unfamiliar with (namely the SimpleDateFormat and Date classes), but
that's okay! You are not required to understand these, just know that SimpleDateFormat and Date allow us
to print out the current date. Feel free to explore these classes or ask the course staff if you'd like to learn
more about them!

Analogous to the ArrayIntList class we implemented, you should be implementing this data
structure with an underlying array. Instead of containing int s, you can think of a ArrayRepository
being an iteration of our ArrayIntList containing Commit s instead. Thus, we have provided an
inner Commit class, which contains the necessary data of a commit (Ideally, we would make this class
private, but we leave it public for ease of testing.)

Notice that the id and message fields of the Commit class are all final , meaning that you will not
be able to modify them. If you attempt to change the value of these fields after they have been
initialized, you will get a compiler error such as the following:

error: cannot assign a value to final variable message

Required Operations
Your ArrayRepository class must include the following methods:

public ArrayRepository(String name)

Create a new, empty repository with the specified name
If the name is null or empty, throw an IllegalArgumentException

public String getRepoHead()

Return the ID of the current head of this repository.
If the head is null , return null

public int getRepoSize()

Return the number of commits in the repository

public String toString()

Return a string representation of this repository in the following format:
<name> - Current head: <head>

<head> should be the result of calling toString() on the head commit.
If there are no commits in this repository, instead return <name> - No commits

public boolean contains(String targetId)

Return true if the commit with ID targetId is in the repository, false if not.
Throws an IllegalArgumentException if targetId is null
Note that all elements are unique. Therefore, it should not continue looping unnecessarily once
the element of interest is found.

public String getHistory(int n)

Return a string consisting of the String representations of the most recent n commits in this
repository, with the most recent first. Commits should be separated by a newline (\n)
character.

If there are fewer than n commits in this repository, return them all.
If there are no commits in this repository, return the empty string.
If n is non-positive, throw an IllegalArgumentException .

public String commit(String message)

Create a new commit with the given message, add it to this repository.
The new commit should become the new head of this repository, preserving the history
behind it.

Throws an IllegalArgumentException if message is null
Return the ID of the new commit.

public boolean drop(String targetId)

Remove the commit with ID targetId from this repository, maintaining the rest of the history.
Throws an IllegalArgumentException if targetId is null
Returns true if the commit was successfully dropped, and false if there is no commit that
matches the given ID in the repository.
Note that all elements are unique. Therefore, it should not continue looping unnecessarily once
the element of interest is found.

public void synchronize(ArrayRepository other)

Takes all the commits in the other repository and moves them into this repository,
combining the two repository histories such that chronological order is preserved. That is, after
executing this method, this repository should contain all commits that were from this and
other , and the commits should be ordered in timestamp order from most recent to least

Expand

Expand

recent.
If the other repository is null, throw an IllegalArgumentException
If the other repository is empty, this repository should remain unchanged.
If this repository is empty, all commits in the other repository should be moved into
this repository.
At the end of this method's execution, other should be an empty repository in all cases.
You should not construct any new Commit objects to implement this method. You may
however create as many references as you like.
You may construct a new auxiliary array to help implement this method.

Run Time Requirement

Unless otherwise stated, all methods must run in O(n) time where n is the size of the
repository.
getRepoHead , toString , and size must run in O(1) time.

synchronize Explained

Client Program & Visualization
We have provided a client program that will allow you to test your ArrayRepository
implementation by creating and manipulating repositories. The client program will directly call the
methods you implement in your ArrayRepository class and will show you the resulting changes to
the repositories. Click "Expand" below to see a sample execution of the client (user input is bold and
underlined).

In addition to this, you may (and are encouraged to) create your own client programs to test out your
implementation on various cases. You may also modify the provided client if you find it helpful.
However, your ArrayRepository class must work with the provided client without
modification and must meet all requirements above.

Testing
On this assignment, you are required to write 4 of your own test cases testing various methods.
You should be writing a testing getRepoSize , commit , getRepoHead , and contains . Each of these
test cases should be contained within their own method in your Testing class. We've
provided you two additional helper methods to help in this process, as well as the
ExampleTesting.java to give you an idea of how to use them. ExampleTesting.java also includes

tests for getHistory and drop . You are not required to write test cases for any of the other instance
methods for your ArrayRepository implementation, but we'd encourage you do so to get more
practice writing JUnit tests.

Each of the tests you write must include a throws InterruptedException in the method declaration
(similar to how we write throws FileNotFoundException when doing File I/O) as we must
temporarily interrupt execution via Thread.sleep to ensure individual commits have unique
timestamps. Examples of this can be seen in ExampleTesting.java

WARNING: If you choose to not use the provided helper methods, you must make sure to call
Thread.sleep(1) between each of your commits. This will ensure each individual Commit node has a unique
timestamp

WARNING: We have provided a test case that simply tests to see if you've uploaded Testing.java and it fails
no tests. It does not check whether or not you've met the testing requirements for this assignment.

� Implementation Guidelines
As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements and hints:

WARNING: You must use an iterative approach to this assignment. While recursion is a powerful tool
that we'll explore later in the course, we're specifically assessing your ability to reason about ArrayLists and
the cases they generate.

WARNING: You must use an underlying array to implement this class. You may not use any additional
data structures to implement this class or certain methods. We are specifically assessing your ability to
construct and define a data structure class as an implementor.

The specified exceptions must be thrown correctly in the specified cases. Exceptions should be
thrown as soon as possible, and no unnecessary work should be done when an exception is
thrown. Exceptions should be documented in comments, including the type of exception
thrown and under what conditions.
You should not construct any unnecessary Commit objects. Specifically, you should only
construct a Commit object when an entirely new commit is being created. If commits are being
removed or rearranged, you should manipulate the existing Commit objects. (You may create
as many references to Commit objects as you like.)

You should only need to construct Commit objects in the commit() method.
Your ArrayRepository class should have the following fields as specified below and they
should be declared private . You are not allowed to have any other fields.

A reference to the underlying Commit array.
A field to keep track of the repository's name.
A size field to keep track of the size of the repository.

You should not modify the id, message , or timeStamp fields directly. In particular if you
run into the issue error: cannot assign a value to final variable message , it likely
means that you are attempting to modify a Commit object's data, instead of rearranging the
commits.
Some notes on synchronize :

Note that you will have to compare the time stamps to determine which order they
should appear in and that the timeStamp field is of type long . This is another primitive
that you haven't seen before, but you can essentially treat it as an int/double when
doing your comparisons. So, if you're trying to check if commit1 is chronologically earlier
than commit2 , you can check if commit1.timeStamp < commit2.timeStamp .

