LEC 19

CSE 123

Victory Lap & Next Steps

Questions during Class?

Raise hand or send here

sli.do #cse123A

BEFORE WE START

Talk to your neighbors:

What was your favorite thing you learned about this quarter? Why?

Instructor: Nathan Brunelle

Aroh	nan As	har N	leha R	ohini i	Rushil
TAS: Ide	o Zac	hary Seb	oastian Jo	oshua	Sean
Hayo	den Ca	leb Ju	ustin H	Heon R	ashad
Srih	ari Bei	noit D	erek (Chris Bl	naumik
Kul	nu Ka	vya Cy	nthia S	hreya A	Ashley
Zia	o Kie	ran Ma	arcus C	rystal E	eshani
Prak	shi Pac	kard C	Cora D	Dixon N	ichole
Niya	ati Tri	en Law	vrence E	Evan	Cady

Announcements

- C3 due tonight (6/6) at 11:59pm
- R7/R-Bucks due Sunday (6/8) at 11:59pm
 - Two forms to submit! Both on the Ed board.
 - Open to C3 if you need two extra days instead of another resub
 - Open to all assignments w/ feedback released
- IPL closes end of day today (6/6)
 - Not open this weekend or next week
 - Message board will remain available
- Final Exam Wednesday (6/11) @ 12:30pm-2:30pm in KNE 110/120
 - Seating chart now posted on the course website!
 - Typical rules for quizzes, note sheet (8.5" x 11" double-sided, typed or handwritten)
- Please fill out course evaluation by Sunday night!

You Made It!

[Recap] Why 123?

1. To solve more complex problems by leveraging more complex programming structures / patterns

- 2. To better rationalize specific design decisions
 - How to "best" structure classes to reduce redundancy
 - Which ADT implementations are "most" appropriate to use

- 3. To understand and critically analyze intersections between Computer Science and society
 - Search engines, algorithmic art, machine learning, etc.
 - Developing informed opinions on current issues

Be a better programmer

Be a better person

[Recap] Topics Covered

- Advanced Object-Oriented Programming (OOP)
 - Inheritance, Polymorphism, Abstract classes
- Implementing Abstract Data Types (ADTs)
 - ArrayIntList (int[] elementData, int size)
 - LinkedIntList (ListNode front)
 - Java's ArrayList & LinkedList (int size, ListNode back)
- Runtime (Complexity & Big O notation)
- Recursion
 - Recursive definitions (n! = n * (n 1)!)
 - (Implicit) Base and Recursive cases
 - Public / private pairs
 - LinkedLists w/ recursion (x = change(x))
- Binary Trees
 - Binary Search Trees (BST) & Runtime
- Exhaustive Search / Recursive Backtracking
 - Dead ends / Choose, explore Un-choose
- Machine Learning & Hashing

Assessable content

You've learned A LOT!!!

(hopefully)

Future Courses

CSE Majors

Course	Overview
<u>CSE 311</u>	Mathematical foundations
<u>CSE 351</u>	Low-level computer organization/abstraction
<u>CSE 331</u>	Software design/implementation
<u>CSE 340</u>	Interaction Programming
<u>CSE 341</u>	Programming languages
<u>CSE 344</u>	Data Management (databases)

https://www.cs.washington.edu/academics/ugrad/current-students

- Tons of options for everyone!
 - Self study always valid too!

Also: bringing computational thinking to other fields!

Non-CSE Majors

Course	Overview
<u>CSE 154</u>	Intro to web programming
<u>CSE 163</u>	Intermediate programming, data analysis
<u>CSE 180</u>	Introduction to data science
<u>CSE 373</u>	Data structures and algorithms
<u>CSE 374</u>	Low-level programming and tools
<u>CSE 412</u>	Data Visualization
<u>CSE 416</u>	Intro. to Machine Learning

https://www.cs.washington.edu/academics/ugrad/nonmajor-options/nonmajor-courses

Applications of CS

or "What can I do with what I learned?"

- Detect and prevent toxicity online
- <u>Digitize basketball players</u>
- Help DHH people identify sounds
- Figure out how to best distribute relief funds
- Recognize disinformation online
- Make movies
- Improve digital collaboration
- Fix Olympic badminton
- And so much more!

Future Projects

- At this point, you know 90% of the fundamentals you need to accomplish practically any project
 - Hurdle will typically be learning the syntax of a new language, using GitHub, importing external libraries, etc.

• Some ideas:

- Make a Minecraft mod! (Java) [link]
- Make a Discord bot! (Python) [link]
- Make personal website! (HTML, CSS, Javascript) [link]
- Convert a project from this course into a more user-friendly application
 - C1, make a Graphical User Interface (GUI) [link]
 - P3, refine the Email class until you get an accuracy you're happy with
- Really, anything you want!!!*

Frequently Asked Questions

- How can I get better at programming?
 - Practice!
- How can I learn to X?
 - Search online, read books, look at examples
 - Start with something that already works (try github), then make changes!
- What should I work on next?
 - Anything you can think of! (See previous slide for some ideas)
- Should I learn another language? Which one?
 - Depends on what you want to do!
 - Python: Data Science & Machine Learning
 - JavaScript: Web Dev
 - C / C++: Systems Programming
- What's the best programming language?
 - (take CSE 341/CSE 413)

Thank your TAs!

Thank You!

- Thank you for participating, asking questions, engaging with course materials & resources!
 - And thank you for the feedback if you filled out the course evaluation :)

Thank your amazing TAs!

Any final questions before we wrap?