
CSE 123 Spring 2025LEC 17: Hashing

CSE 123
L E C 1 7

Questions during Class?

Raise hand or send here

sli.do #cse123A

Hashing

Talk to your neighbors:

How do you remember
where you put things?

BEFORE WE START

Nathan Brunelle

TAs:

Instructor:
Arohan Ashar Neha Rohini Rushil

Ido Zachary Sebastian Joshua Sean

Hayden Caleb Justin Heon Rashad

Srihari Benoit Derek Chris Bhaumik

Kuhu Kavya Cynthia Shreya Ashley

Ziao Kieran Marcus Crystal Eeshani

Prakshi Packard Cora Dixon Nichole

Niyati Trien Lawrence Evan Cady

CSE 123 Spring 2025LEC 17: Hashing

Announcements

• Programming Project 3 due today, Friday 5/30 at 11:59pm

• Creative Project 3 out, due Friday, June 6 at 11:59pm

• Resubmission Cycle 6 due tonight at 11:59pm
- P1, C2, P2 eligible

• R7 / R-Bucks will open on Monday

• Final Exam: Wednesday, June 11 at 12:30pm – 2:20pm
- Left-handed desk request form, closes Tuesday, June 3

- Details and resources posted later today

https://edstem.org/us/courses/70325/discussion/6304158

CSE 123 Spring 2025LEC 17: Hashing

Data structures so far

• Lists
- Maintain an ordered sequence of elements

- Provides get(), add(), remove(), ...

- Studied two implementations: ArrayIntList and LinkedIntList

• Sets
- Maintain a collection of elements

- Provides contains(), add(), remove(), ...

- Implementations?

CSE 123 Spring 2025LEC 17: Hashing

Set implementations

ArraySet(?) LinkedSet(?) TreeSet HashSet

contains() O(n) O(n)

add() O(n) O(n)

remove() O(n) O(n)

CSE 123 Spring 2025LEC 17: Hashing

Set implementations

ArraySet(?) LinkedSet(?) TreeSet HashSet

contains() O(n) O(n) O(log(n))*

add() O(n) O(n) O(log(n))*

remove() O(n) O(n) O(log(n))*

* assuming tree
 is balanced

CSE 123 Spring 2025LEC 17: Hashing

Hash Table

• Define a hash function h(x) that turns any value into an integer
- Call this the values hash code

• Create a big array

• Store each value in the array at index h(x)

x

h(x)0 1 …

CSE 123 Spring 2025LEC 17: Hashing

Set implementations

ArraySet(?) LinkedSet(?) TreeSet HashSet

contains() O(n) O(n) O(log(n))*

add() O(n) O(n) O(log(n))*

remove() O(n) O(n) O(log(n))*

* assuming tree
 is balanced

CSE 123 Spring 2025LEC 17: Hashing

Set implementations

ArraySet(?) LinkedSet(?) TreeSet HashSet

contains() O(n) O(n) O(log(n))* O(1)**

add() O(n) O(n) O(log(n))* O(1)**

remove() O(n) O(n) O(log(n))* O(1)**

* assuming tree
 is balanced

** with some
 assumptions

CSE 123 Spring 2025LEC 17: Hashing

What is Linear Probing?

h(x) = x % size h’(x) = [h(x) + f(i)] % size

f(i) = i

Regular Hash Function Hash Function (if collision)

A way to resolve collisions by adding the
element in the next available spot

CSE 123 Spring 2025LEC 17: Hashing

What is Linear Probing?
h(x) = x % size

Index

0
1
2
3
4
5
6
7
8
9

8

3

13

23

43

10

h’(x) = [h(x) + f(i)] % size f(i) = i

CSE 123 Spring 2025LEC 17: Hashing

What is Quadratic Probing?

h(x) = x % size h’(x) = [h(x) + f(i)] % size

f(i) = i2

Regular Hash Function Hash Function (if collision)

A way to resolve collisions by adding the
element in the next available spot (quadratically)

CSE 123 Spring 2025LEC 17: Hashing

What is Quadratic Probing?
h(x) = x % size

Index

0
1
2
3
4
5
6
7
8
9

8

3

13

23

43

10

h’(x) = [h(x) + f(i)] % size f(i) = i2

CSE 123 Spring 2025LEC 17: Hashing

What is Chaining?

A way to resolve collisions by creating a
LinkedList at that Index (also called a “bucket”)

● Combines both features of ArrayList Indexing and the
ease of adding values using LinkedLists

CSE 123 Spring 2025LEC 17: Hashing

What is Chaining?
h(x) = x % size

Index

0
1
2
3
4
5
6
7
8
9

8

3

13

23

43

10

CSE 123 Spring 2025LEC 17: Hashing

Recap (Comparison)

Linear Probing Quadratic Probing Chaining

A way to resolve collisions by
adding the element in the

next available spot

A way to resolve collisions by
adding the element in the

next available spot
(quadratically)

A way to resolve collisions by
creating a LinkedList at that

Index (also called a “bucket”)

CSE 123 Spring 2025LEC 17: Hashing

Why Chaining?

● Linear and Quadratic Probing often result in “Clustering”
● Inefficient use of space in the table
● This means the Runtimes will also be slower

1 2 3 4 5 6 7 8 9

Clustering - A tendency for data to clump
together when using solutions to Collisions like

Linear and Quadratic probing

CSE 123 Spring 2025LEC 17: Hashing

Why Chaining?
● Hashing can reduce it down to O(1)
● “Load Factor” - lambda (𝞴)

○ the number of values in each LinkedList
● Finding the index in the Table is O(1)
● Finding value in LinkedList is O(𝞴) or essentially O(1)

CSE 123 Spring 2025LEC 17: Hashing

Standard Java hashCode

hash = 0

for (each field) {

 hash = 31 * hash + hash(field)

}

	Default Section
	Slide 1: Hashing
	Slide 2: Announcements
	Slide 3: Data structures so far
	Slide 4: Set implementations
	Slide 5: Set implementations
	Slide 6: Hash Table
	Slide 7: Set implementations
	Slide 8: Set implementations
	Slide 9: What is Linear Probing?
	Slide 10: What is Linear Probing?
	Slide 11: What is Quadratic Probing?
	Slide 12: What is Quadratic Probing?
	Slide 13: What is ⭐Chaining?
	Slide 14: What is ⭐Chaining?
	Slide 15: Recap (Comparison)
	Slide 16: Why ⭐Chaining?
	Slide 17: Why ⭐Chaining?
	Slide 18: Standard Java hashCode

