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Questions during Class?

Raise hand or send here

sli.do    #cse123A

Hashing

Talk to your neighbors:

How do you remember 
where you put things?

BEFORE WE START

Nathan Brunelle

TAs:

Instructor:
Arohan Ashar Neha Rohini Rushil

Ido Zachary Sebastian Joshua Sean

Hayden Caleb Justin Heon Rashad

Srihari Benoit Derek Chris Bhaumik

Kuhu Kavya Cynthia Shreya Ashley

Ziao Kieran Marcus Crystal Eeshani

Prakshi Packard Cora Dixon Nichole

Niyati Trien Lawrence Evan Cady
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Announcements

• Programming Project 3 due today, Friday 5/30 at 11:59pm

• Creative Project 3 out, due Friday, June 6 at 11:59pm

• Resubmission Cycle 6 due tonight at 11:59pm
- P1, C2, P2 eligible 

• R7 / R-Bucks will open on Monday

• Final Exam: Wednesday, June 11 at 12:30pm – 2:20pm 
- Left-handed desk request form, closes Tuesday, June 3

- Details and resources posted later today

https://edstem.org/us/courses/70325/discussion/6304158
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Data structures so far

• Lists
- Maintain an ordered sequence of elements

- Provides get(), add(), remove(), ...

- Studied two implementations: ArrayIntList and LinkedIntList

• Sets
- Maintain a collection of elements

- Provides contains(), add(), remove(), ...

- Implementations?
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Set implementations

ArraySet(?) LinkedSet(?) TreeSet HashSet

contains() O(n) O(n)

add() O(n) O(n)

remove() O(n) O(n)
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Set implementations

ArraySet(?) LinkedSet(?) TreeSet HashSet

contains() O(n) O(n) O(log(n))*

add() O(n) O(n) O(log(n))*

remove() O(n) O(n) O(log(n))*

* assuming tree 
   is balanced
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Hash Table

• Define a hash function h(x) that turns any value into an integer
- Call this the values hash code

• Create a big array

• Store each value in the array at index h(x)

x

h(x)0 1 …



CSE 123 Spring 2025LEC 17: Hashing

Set implementations

ArraySet(?) LinkedSet(?) TreeSet HashSet

contains() O(n) O(n) O(log(n))*

add() O(n) O(n) O(log(n))*

remove() O(n) O(n) O(log(n))*

* assuming tree 
   is balanced
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Set implementations

ArraySet(?) LinkedSet(?) TreeSet HashSet

contains() O(n) O(n) O(log(n))* O(1)**

add() O(n) O(n) O(log(n))* O(1)**

remove() O(n) O(n) O(log(n))* O(1)**

* assuming tree 
   is balanced

** with some 
     assumptions
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What is Linear Probing?

h(x) = x % size h’(x) = [h(x) + f(i)] % size

f(i) = i

Regular Hash Function Hash Function (if collision)

A way to resolve collisions by adding the 
element in the next available spot
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What is Linear Probing?
h(x) = x % size

Index

0
1
2
3
4
5
6
7
8
9

8

3

13

23

43

10

h’(x) = [h(x) + f(i)] % size f(i) = i
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What is Quadratic Probing?

h(x) = x % size h’(x) = [h(x) + f(i)] % size

f(i) = i2

Regular Hash Function Hash Function (if collision)

A way to resolve collisions by adding the 
element in the next available spot (quadratically)
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What is Quadratic Probing?
h(x) = x % size

Index

0
1
2
3
4
5
6
7
8
9

8

3

13

23

43

10

h’(x) = [h(x) + f(i)] % size f(i) = i2
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What is Chaining?

A way to resolve collisions by creating a 
LinkedList at that Index (also called a “bucket”)

● Combines both features of ArrayList Indexing and the 
ease of adding values using LinkedLists
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What is Chaining?
h(x) = x % size

Index

0
1
2
3
4
5
6
7
8
9

8

3

13

23

43

10
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Recap (Comparison)

Linear Probing Quadratic Probing Chaining

A way to resolve collisions by 
adding the element in the 

next available spot

A way to resolve collisions by 
adding the element in the 

next available spot 
(quadratically)

A way to resolve collisions by 
creating a LinkedList at that 

Index (also called a “bucket”)
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Why Chaining?

● Linear and Quadratic Probing often result in “Clustering”
● Inefficient use of space in the table
● This means the Runtimes will also be slower

1 2 3 4 5 6 7 8 9

Clustering - A tendency for data to clump 
together when using solutions to Collisions like 

Linear and Quadratic probing
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Why Chaining?
● Hashing can reduce it down to O(1)
● “Load Factor” - lambda (𝞴)

○ the number of values in each LinkedList
● Finding the index in the Table is O(1)
● Finding value in LinkedList is O(𝞴) or essentially O(1)
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Standard Java hashCode

hash = 0

for (each field) {

    hash = 31 * hash + hash(field)

}
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