LEC 14

CSE 123

Binary Tree Modification

Questions during Class?

Raise hand or send here

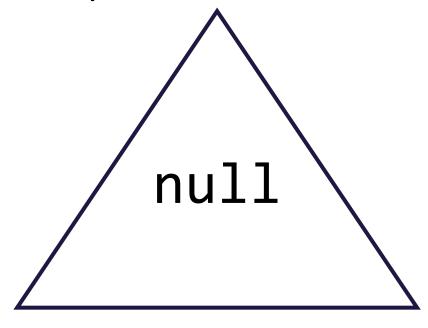
sli.do #cse123A

BEFORE WE START

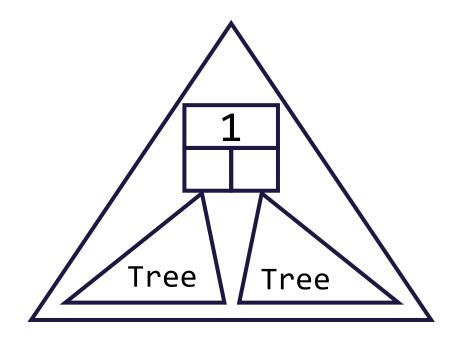
Talk to your neighbors:

What are you looking forward to as it gets warmer?

Instructors: Nathan Brunelle


	Arohan	Ashar	Neha	Rohini	Rushil
TAS: Ido		Zachary	Sebastian	Joshua	Sean
	Hayden	Caleb	Justin	Heon	Rashad
	Srihari	Benoit	Derek	Chris	Bhaumik
	Kuhu	Kavya	Cynthia	Shreya	Ashley
	Ziao	Kieran	Marcus	Crystal	Eeshani
	Prakshi	Packard	Cora	Dixon	Nichole
	Niyati	Trien	Lawrence	Evan	Cady

Announcements


- Programming Assignment 2 due tonight at 11:59pm
- Programming Assignment 3 out tomorrow
 - due next Friday!!! (5/30)
- Quiz 2 next Tuesday (5/27)
 - Practice quiz released yesterday
- Quiz 1 grades out later today

Review: Binary Trees

• A Binary Tree is either:

Node w/ two subtrees

This is a recursive definition!

A tree is either empty or a node with two more trees!

Review: Binary Tree Programming

Programs look very similar to Recursive LinkedList!

- Guaranteed base case: empty tree
 - Simplest possible input, should immediately know the return
- Guaranteed public / private pair
 - Need to know which subtree you're currently processing
- If modifying, we use x = change(x)
 - Don't stop early, return updated subtree (IntTreeNode)

Review: Binary Tree Traversals

- 3 different primary traversals
 - All concerned with when you process your current root

- Pre-order traversal:
 - Process **root**, left subtree, right subtree
- In-order traversal:
 - Process left subtree, root, right subtree
- Post-order traversal:
 - Process left subtree, right subtree, root

Sometimes different traversals yield different results

Modifying Binary Trees

- Like linked lists, cannot modify nodes
 - Because data field is final (there are good reasons for this)
- Will need to create and insert new nodes
- Use x = change(x), usually 3 times
 - overall root (in public method)
 - left subtree
 - right subtree
- Order might matter!
 - Does operation on root depend on children?