
CSE 123 Spring 2025LEC 12: Linked Lists and Recursion

CSE 123
L E C 1 2

Questions during Class?

Raise hand or send here

sli.do #cse123A

Linked Lists with
Recursion

Talk to your neighbors:

Best boba in Seattle?

BEFORE WE START

Instructors: Nathan Brunelle

TAs:
Arohan Ashar Neha Rohini Rushil

Ido Zachary Sebastian Joshua Sean

Hayden Caleb Justin Heon Rashad

Srihari Benoit Derek Chris Bhaumik

Kuhu Kavya Cynthia Shreya Ashley

Ziao Kieran Marcus Crystal Eeshani

Prakshi Packard Cora Dixon Nichole

Niyati Trien Lawrence Evan Cady

CSE 123 Spring 2025LEC 12: Linked Lists and Recursion

Lecture Outline

• Announcements

• Traversing Linked Lists Recursively

• Modifying Linked Lists Recursively

CSE 123 Spring 2025LEC 12: Linked Lists and Recursion

Announcements
• Creative Project 2 due tonight May 14 at 11:59pm

• Resubmission Cycle 4 is due Fri (May 16) at 11:59pm
- C1, P1 eligible

• Programming Assignment 2 released tomorrow (May 15)
- Focused on exhaustive search + recursive backtracking!

• Quiz 1 grades out early next week

CSE 123 Spring 2025LEC 12: Linked Lists and Recursion

Lecture Outline

• Announcements

• Traversing Linked Lists Recursively

• Modifying Linked Lists Recursively

CSE 123 Spring 2025LEC 12: Linked Lists and Recursion

Linked Lists
• A linked list is either:

Empty list Node w/ another linked list

This is a recursive definition!

A list is either empty or a node with another list!

data next

4 another listnull

CSE 123 Spring 2025LEC 12: Linked Lists and Recursion

Recursive Traversals w/ LinkedLists
• Guaranteed base case: empty list

- Simplest possible input, should immediately know the return

• Guaranteed public / private pair
- Need to know which sublist you’re currently processing (i.e. curr)

method(one) method(two) method(three) method(null)

1
front

2 3 null

CSE 123 Spring 2025LEC 12: Linked Lists and Recursion

Lecture Outline

• Announcements

• Traversing Linked Lists Recursively

• Modifying Linked Lists Recursively

CSE 123 Spring 2025LEC 12: Linked Lists and Recursion

Modifying LinkedLists [Review]

• Remember: using a curr variable to iterate over nodes

• Does changing curr actually update our chain?
- What will? Changing curr.next, changing front

- Need to stop one early to make changes

• Often a number of cases to watch out for:
- M(iddle) – Modifying node in the middle of the list (general)

- F(ront) – Modifying the first node

- E(mpty) – What if the list is empty?

- E(nd) – Rare, do we need to do something with the end of the list?

CSE 123 Spring 2025LEC 12: Linked Lists and Recursion

Modifying LinkedLists Recursively

• Much easier than iterative solutions!

• No longer need to stop one early
- Can go right to the point you’d like to make the change

method(one) method(two) method(three) method(null)

1
front

2 3 null

CSE 123 Spring 2025LEC 12: Linked Lists and Recursion

Modifying LinkedLists Recursively

• Much easier than iterative solutions!

• No longer need to stop one early
- Can go right to the point you’d like to make the change

• How? Return the updated change and catch it!
- Private pair returns ListNode type

- curr.next = change(curr.next) / front = change(front)

- Resulting solutions much cleaner than iterative cases

• We call this pattern x = change(x)

CSE 123 Spring 2025LEC 12: Linked Lists and Recursion

removeAll Walkthrough

1
front

3 6 3

private ListNode removeAll(int value, ListNode node) {
 if (node == null) {
 return node;
 } else if (node.data == value) {
 return removeAll(value, node.next);
 } else {
 // x = change(x)
 node.next = removeAll(value, node.next);
 return node;
 }
}

	Slide 1: Linked Lists with Recursion
	Slide 2: Lecture Outline
	Slide 3: Announcements
	Slide 4: Lecture Outline
	Slide 5: Linked Lists
	Slide 6: Recursive Traversals w/ LinkedLists
	Slide 7: Lecture Outline
	Slide 8: Modifying LinkedLists [Review]
	Slide 9: Modifying LinkedLists Recursively
	Slide 10: Modifying LinkedLists Recursively
	Slide 11

