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• Announcements

• Traversing Linked Lists Recursively

• Modifying Linked Lists Recursively
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Announcements
• Creative Project 2 due tonight May 14 at 11:59pm

• Resubmission Cycle 4 is due Fri (May 16) at 11:59pm
- C1, P1 eligible

• Programming Assignment 2 released tomorrow (May 15)
- Focused on exhaustive search + recursive backtracking! 

• Quiz 1 grades out early next week
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Linked Lists
• A linked list is either:

Empty list Node w/ another linked list

This is a recursive definition! 

A list is either empty or a node with another list!

data next

4 another listnull
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Recursive Traversals w/ LinkedLists
• Guaranteed base case: empty list

- Simplest possible input, should immediately know the return

• Guaranteed public / private pair
- Need to know which sublist you’re currently processing (i.e. curr)

method(one) method(two) method(three) method(null)

1
front

2 3 null
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Modifying LinkedLists [Review]

• Remember: using a curr variable to iterate over nodes

• Does changing curr actually update our chain?
- What will? Changing curr.next, changing front

- Need to stop one early to make changes

• Often a number of cases to watch out for:
- M(iddle) – Modifying node in the middle of the list (general)

- F(ront) – Modifying the first node

- E(mpty) – What if the list is empty?

- E(nd) – Rare, do we need to do something with the end of the list?
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Modifying LinkedLists Recursively

• Much easier than iterative solutions!

• No longer need to stop one early
- Can go right to the point you’d like to make the change

method(one) method(two) method(three) method(null)

1
front

2 3 null
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Modifying LinkedLists Recursively

• Much easier than iterative solutions!

• No longer need to stop one early
- Can go right to the point you’d like to make the change

• How? Return the updated change and catch it!
- Private pair returns ListNode type

- curr.next = change(curr.next) / front = change(front)

- Resulting solutions much cleaner than iterative cases 

• We call this pattern x = change(x)
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removeAll Walkthrough

1
front

3 6 3

private ListNode removeAll(int value, ListNode node) {
  if (node == null) {
    return node;
  } else if (node.data == value) {
    return removeAll(value, node.next);
  } else {
      // x = change(x)
    node.next = removeAll(value, node.next); 
    return node;
  }
}
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