
CSE 123 Spring 2025LEC 10: Exhaustive Search

CSE 123
L E C 1 0

Questions during Class?

Raise hand or send here

sli.do #cse123A

Exhaustive Search

Talk to your neighbors:

What’s your favorite
rainy day activity?

BEFORE WE START

Instructors: Nathan Brunelle

TAs:
Arohan Ashar Neha Rohini Rushil

Ido Zachary Sebastian Joshua Sean

Hayden Caleb Justin Heon Rashad

Srihari Benoit Derek Chris Bhaumik

Kuhu Kavya Cynthia Shreya Ashley

Ziao Kieran Marcus Crystal Eeshani

Prakshi Packard Cora Dixon Nichole

Niyati Trien Lawrence Evan Cady

CSE 123 Spring 2025LEC 10: Exhaustive Search

Announcements

• Yay Quiz 1 is done!
- Again, grades before Quiz 2 but we have makeups to take care of…

- Quiz 2 is scheduled for May 26, so you have a bit of a break!

• Programming Assignment 1 due tonight (May 7) at 11:59pm

• Creative Project 2 released tomorrow (Thurs, May 8), due in one week
(Wed, May 14)

- Focused on recursion!

• Resubmission Cycle 3 is open, closes on Friday, May 9
- P0, C1 eligible

• The CSE 12x/14x TA application is now open for Autumn 2025!

https://courses.cs.washington.edu/courses/cse14x/ta/

CSE 123 Spring 2025LEC 10: Exhaustive Search

Exhaustive Search
• We suppose we want to explore the space of all possible solutions…

• So what do we do?
- We “exhaustively search” through every possibility

- We need some sort of plan or process to follow to do this programmatically

• What do we need? Recursion + some kind of accumulator
- public / private pair

CSE 123 Spring 2025LEC 10: Exhaustive Search

public static void printNums() {
 printNums("");
}

private static void printNums(String soFar) {
 if (soFar.length() == 3) {
 System.out.println(soFar);
 } else {
 printNums(soFar+ "1");
 printNums(soFar+ "2");
 printNums(soFar+ "3");
 }
}

Tracing through printNums

CSE 123 Spring 2025LEC 10: Exhaustive Search

Decision Trees
• Visual we use to help understand what our process is

- Visualization tool, not a data structure

- If you can draw a decision tree, you can implement exhaustive search

• Can glean important information
- Base case (end nodes)

- Recursive case (middle nodes)

- “Dead end” case (more on this later…)

CSE 123 Spring 2025LEC 10: Exhaustive Search

Exhaustive Search Pattern (search)
public static void search(input) {

 search(input, "");

}

private static void search(input, String soFar) {

 if (base case) {

 // Do something with soFar (e.g. print it out)

 System.out.println(soFar);

 } else {

 // Might not be a loop, but 1 recursive call for each option

 for (each option) {

 search(input, soFar + option);

 }

 }

}

CSE 123 Spring 2025LEC 10: Exhaustive Search

Exhaustive Search Pattern (printNums)
public static void printNums() {

 printNums("");

}

private static void printNums(String soFar) {

 if (soFar.length() == 3) {

 // Do something with soFar (e.g. print it out)

 System.out.println(soFar);

 } else {

 // Might not be a loop, but 1 recursive call for each option

 for (int i = 1; i <= 3; i++) {

 printNums(soFar + i);

 }

 }

}

CSE 123 Spring 2025LEC 10: Exhaustive Search

Password Cracker
• Let’s say we want to crack the password of a 4 digit combination lock

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”

CSE 123 Spring 2025LEC 10: Exhaustive Search

Password Cracker
• Let’s say we want to crack the password of a 4 digit combination lock

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”

CSE 123 Spring 2025LEC 10: Exhaustive Search

Password Cracker
• Let’s say we want to crack the password of a 4 digit combination lock

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”

CSE 123 Spring 2025LEC 10: Exhaustive Search

CSE 123 Spring 2025LEC 10: Exhaustive Search

Password Cracker
• Now, what if we knew the sum of all digits was 5?

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”

CSE 123 Spring 2025LEC 10: Exhaustive Search

Password Cracker
• Now, what if we knew the sum of all digits was 5?

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”

CSE 123 Spring 2025LEC 10: Exhaustive Search

Updated Exhaustive Search Pattern
public static void search(input) {

 search(input, “”);

}

private static void search(input, String soFar) {

 if (base case) {

 // Do something with soFar (e.g. print it out)

 System.out.println(soFar);

 } else if (not dead end) {

 // Might not be a loop, but 1 recursive call for each option

 for (each option) {

 search(input, soFar + option);

 }

 }

}

CSE 123 Spring 2025LEC 10: Exhaustive Search

Sidenote:
• There are some problems computers can solve, but not very cleverly…

• Two "classes" of problems…
- Polynomial

- Problems with a polynomial-time solution

- Nondeterministic Polynomial
- Problems that can be solved by a non-deterministic Turing machine in polynomial time…

- Problems that we don't think have polynomial-time solutions…

- Often these solutions are exponential time because we are sort of "brute-forcing" a
solution…

- Generative every possible solution and see if it works!

• Open problem: P = NP?

https://en.wikipedia.org/wiki/P_versus_NP_problem

	Default Section
	Slide 1: Exhaustive Search
	Slide 2: Announcements
	Slide 3: Exhaustive Search
	Slide 4
	Slide 5: Decision Trees
	Slide 6: Exhaustive Search Pattern (search)
	Slide 7: Exhaustive Search Pattern (printNums)
	Slide 8: Password Cracker
	Slide 9: Password Cracker
	Slide 10: Password Cracker
	Slide 11
	Slide 12: Password Cracker
	Slide 13: Password Cracker
	Slide 14: Updated Exhaustive Search Pattern
	Slide 15: Sidenote:

