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Announcements

• Yay Quiz 1 is done! 
- Again, grades before Quiz 2 but we have makeups to take care of…

- Quiz 2 is scheduled for May 26, so you have a bit of a break!

• Programming Assignment 1 due tonight (May 7) at 11:59pm

• Creative Project 2 released tomorrow (Thurs, May 8), due in one week 
(Wed, May 14)

- Focused on recursion! 

• Resubmission Cycle 3 is open, closes on Friday, May 9
- P0, C1 eligible 

• The CSE 12x/14x TA application is now open for Autumn 2025! 

https://courses.cs.washington.edu/courses/cse14x/ta/
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Exhaustive Search
• We suppose we want to explore the space of all possible solutions…

• So what do we do? 
- We “exhaustively search” through every possibility

- We need some sort of plan or process to follow to do this programmatically 

• What do we need? Recursion + some kind of accumulator
- public / private pair
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public static void printNums() {
  printNums("");
}

private static void printNums(String soFar) {
  if (soFar.length() == 3) {
    System.out.println(soFar);
  } else {
    printNums(soFar+ "1");
    printNums(soFar+ "2");
    printNums(soFar+ "3");
  }
}

Tracing through printNums
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Decision Trees
• Visual we use to help understand what our process is

- Visualization tool, not a data structure

- If you can draw a decision tree, you can implement exhaustive search

• Can glean important information
- Base case (end nodes)

- Recursive case (middle nodes)

- “Dead end” case (more on this later…)
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Exhaustive Search Pattern (search)
public static void search(input) {

    search(input, "");

}

private static void search(input, String soFar) {

    if (base case) {

        // Do something with soFar (e.g. print it out)

        System.out.println(soFar);

    } else {

        // Might not be a loop, but 1 recursive call for each option

        for (each option) {

            search(input, soFar + option);

        }

    }

}
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Exhaustive Search Pattern (printNums)
public static void printNums() {

    printNums("");

}

private static void printNums(String soFar) {

    if (soFar.length() == 3) {

        // Do something with soFar (e.g. print it out)

        System.out.println(soFar);

    } else {

        // Might not be a loop, but 1 recursive call for each option

        for (int i = 1; i <= 3; i++) {

            printNums(soFar + i);

        }

    }

}
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Password Cracker
• Let’s say we want to crack the password of a 4 digit combination lock

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”
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Password Cracker
• Let’s say we want to crack the password of a 4 digit combination lock

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”
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Password Cracker
• Let’s say we want to crack the password of a 4 digit combination lock

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”
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Password Cracker
• Now, what if we knew the sum of all digits was 5?

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”
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Password Cracker
• Now, what if we knew the sum of all digits was 5?

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”
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Updated Exhaustive Search Pattern
public static void search(input) {

    search(input, “”);

}

private static void search(input, String soFar) {

    if (base case) {

        // Do something with soFar (e.g. print it out)

        System.out.println(soFar);

    } else if (not dead end) {

        // Might not be a loop, but 1 recursive call for each option

        for (each option) {

            search(input, soFar + option);

        }

    }

}
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Sidenote:
• There are some problems computers can solve, but not very cleverly…

• Two "classes" of problems…
- Polynomial

- Problems with a polynomial-time solution

- Nondeterministic Polynomial
- Problems that can be solved by a non-deterministic Turing machine in polynomial time…

- Problems that we don't think have polynomial-time solutions…

- Often these solutions are exponential time because we are sort of "brute-forcing" a 
solution…

- Generative every possible solution and see if it works! 

• Open problem: P = NP?

https://en.wikipedia.org/wiki/P_versus_NP_problem
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