
CSE 123
LEC 01

Questions during Class?

Raise hand or send here

sli.do #cse123A

CSE 123 Spring 2025LEC 01: Inheritance; Polymorphism; Comparable

Inheritance;
Polymorphism;
Comparable

Talk to your neighbors:

Plans for the weekend?

BEFORE WE START

Instructors: Nathan Brunelle

TAs:

Arohan Ashar Neha Rohini Rushil

Ido Zachary Sebastian Joshua Sean

Hayden Caleb Justin Heon Rashad

Srihari Benoit Derek Chris Bhaumik

Kuhu Kavya Cynthia Shreya Ashley

Harshitha Kieran Marcus Crystal Eeshani

Prakshi Packard Cora Dixon Nichole

Niyati Trien Lawrence Evan Cady

Ziao

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Grading

Grades should reflect your proficiency in the course objectives

• All assignments will be graded E (Excellent), S (Satisfactory), or N
(Not yet)

• Under certain circumstances, a grade of U (Unassessable) may be
assigned

• Final grades will be assigned based on the amount of work at
each level

• See the syllabus for more details

https://cs.uw.edu/123/syllabus/#grades

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Collaboration Policy

• When we assess your work in this class, we need to know that it’s yours.

• Unless otherwise specified, all graded work must be completed
individually.

Some specific rules to highlight:
• do not share your own solution code or view solution code from any source –

including but not limited to other students, tutors, or the internet
• do not use AI tools (e.g. ChatGPT) on graded work in any capacity

See the syllabus for more details (this is very important to understand).

https://cs.uw.edu/123/syllabus/#academic-honesty-and-collaboration

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Coming up…

• Complete the Introductory Survey
- This helps us gather data about the students taking our classes and their

backgrounds, to inform future offerings.

• Review Section0.5 in Ed
- Includes material covered in cse121 and 122 to help review and jog your

memory!

• The IPL opens Monday, April 7
- Schedule posted soon

• Creative Project 0: Search Engine out now
- Due Wednesday, April 4, 11:59pm

https://forms.gle/zyUNhmXnNmkkfZhr8

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Collaboration Policy

• When we assess your work in this class, we need to know that it’s yours.

• Unless otherwise specified, all graded work must be completed
individually.

Some specific rules to highlight:
• do not share your own solution code or view solution code from any source –

including but not limited to other students, tutors, or the internet
• do not use AI tools (e.g. ChatGPT) on graded work in any capacity

See the syllabus for more details (this is very important to understand).

https://cs.uw.edu/123/syllabus/#academic-honesty-and-collaboration

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Lecture Outline

• Inheritance

• Comparable

• Polymorphism

- Declared vs. Actual Type

- Compiler vs. Runtime Errors

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Inheritance
• Connect together a “subclass” and “superclass”

- Borrow / “inherit” code to reduce redundancy

- super() keyword can be used just like this()

• Syntax: public class Subclass extends Superclass

• Should Represent “is-a” relationships

- public class Chef extends Employee

- public class Server extends Employee

• In Java, all objects implicitly inherit from the Object class
- toString(), equals(Object), etc.

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Is-a Relationships

Animal

Mammal

Dog Cat

Fish Birds Reptile Amphibian

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

PCM Review

sli.do #cse123A

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Lecture Outline

• Inheritance

• Comparable

• Polymorphism

- Declared vs. Actual Type

- Compiler vs. Runtime Errors

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Comparable
• Comparable<E> is an interface that allows implementers to

define an ordering between two objects
• Used by TreeSet, TreeMap, Collections.sort, etc.

• One required method:
public int compareTo (E other);

• Returned integer falls into 1 of 3 categories
< 0: this is “less than” other
= 0: this is “equal to” other
> 0: this is “greater than” other

a.compareTo(b);

this other

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Subtraction Trick
• compareTo implementation when comparing two integers (a) ascending:

• This is just subtraction!

• What if we wanted to sort descending?

• Warning: this only works for integers! Doubles have issues with truncation.

if (this.a < other.a) -> negative number

else if (this.a > other.a) -> positive number

else -> 0

this.a – other.a

other.a – this.a

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Lecture Outline

• Inheritance

• Comparable

• Polymorphism

- Declared vs. Actual Type

- Compiler vs. Runtime Errors

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Polymorphism
• DeclaredType x = new ActualType()

- All methods in DeclaredType can be called on x

- We’ve seen this with interfaces (List<String> vs. ArrayList<String>)

- Can also be to inheritance relationships

Animal[] arr = {new Dog(), new Cat(), new Bear()};

for (Animal a : arr) {

 a.feed();

}

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Compiler vs. Runtime Errors
• DeclaredType x = new ActualType()

- At compile time, Java only knows DeclaredType

- Compiler error: trying to call a method that isn’t present

 Animal a = new Dog();

 a.bark(); // No bark() -> CE

- Can cast to change the DeclaredType of an object

 ((Dog) a).bark(); // No more CE

- Runtime error: attempting to cast to an invalid DeclaredType*

 Animal a = new Fish();

 ((Dog) a).bark(); // Can’t cast -> RE

- Order matters! Compilation before runtime

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Declared Type and Actual Type

Dog bucky = new Dog("Bucky");Animal bucky = new Dog("Bucky");

DeclaredType varName = new ActualType(…);

Declared Type: Animal
Actual Type: Dog

Can call methods that makes sense for EVERY Animal
If Dog overrides a method, uses the Dog version

Declared Type: Dog
Actual Type: Dog

Can call methods that makes sense for EVERY Dog
If Dog overrides a method, uses the Dog version

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Inheritance and Method Calls

When compiling:

Can we guarantee that the method exists
for the declared type?

Does the declared type or one of its super
classes contain a method of that name?

If not… Compile Error!

Animal bucky = new Dog();
bucky.bark();

Compiling:
Look this way for

bark

Declared Type

Object

Animal

Dog Fish

ex
te

n
d

s
“i

s
a”

In this example:

When compiling, neither Animal nor Object have a bark
method, so we have a compile error!

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Overrides and Method Calls

Object

Animal

Dog Fish

ex
te

n
d

s
“i

s
a”

When running:

Use the most specific version of the method
call starting from the actual type.

Start from the actual type, then go “up” to
super classes until you find the method. Run
that first-discovered version.

Actual Type

Animal bucky = new Dog();
bucky.feed();

Running:
Look this way for feed

Use the first
implementation found

In this example:

If the Dog class overrides feed, then we’ll use the
implementation in Dog. Otherwise we’ll use the one in
Animal

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Actual Type

Casting and Method Calls

Object

Animal

Dog Fish

Compiling:
From cast-to type

Look this way
for bark

Running:
From actual type

Look this way
for cast-to type

Animal bucky = new Dog();
((Dog) bucky).bark();

When compiling:

Can we guarantee that the method exists
for the Cast-to type?

Does the Cast-to type or one of its super
classes contain a method of that name?

If not… Compile Error!
When Running:

Check that the Cast-to Type is either the
Actual Type, or one of its super classes

Cast-to Type

This example has no error

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Actual Type

Casting and Method Calls

Object

Animal

Dog Fish

Compiling:
From cast-to type

Look this way
for bark

Running:
From actual type

Look this way
for cast-to type

Animal bucky = new Fish();
((Dog) bucky).bark();

When compiling:

Can we guarantee that the method exists
for the Cast-to type?

Does the Cast-to type or one of its super
classes contain a method of that name?

If not… Compile Error!
When Running:

Check that the Cast-to Type is either the
Actual Type, or one of its super classes

Cast-to Type

This example has a runtime error

CSE 123 Spring 2025LEC 01: Inheritance & Polymorphism

Compiler vs. Runtime Errors

	Slide 1: Inheritance; Polymorphism; Comparable
	Slide 2: Grading
	Slide 3: Collaboration Policy
	Slide 4: Coming up…
	Slide 5: Collaboration Policy
	Slide 6: Lecture Outline
	Slide 7: Inheritance
	Slide 8: Is-a Relationships
	Slide 9: PCM Review
	Slide 10: Lecture Outline
	Slide 11: Comparable
	Slide 12: Subtraction Trick
	Slide 13: Lecture Outline
	Slide 14: Polymorphism
	Slide 15: Compiler vs. Runtime Errors
	Slide 16: Declared Type and Actual Type
	Slide 17: Inheritance and Method Calls
	Slide 18: Overrides and Method Calls
	Slide 19: Casting and Method Calls
	Slide 20: Casting and Method Calls
	Slide 21: Compiler vs. Runtime Errors

