
CSE 123 Spring 2025 Practice Final Exam

Name of Student: __

Section (e.g., AA):_____________________ Student UW Number :_________________________________

Do not turn the page until you are instructed to do so.

 Rules/Guidelines:
● You must not begin working before time begins, and you must stop working promptly when time is called. Any

modifications to your exam (writing or erasing) before time begins or after time is called will be reported as
academic misconduct to the university.

● You are allowed one page of notes, no larger than 8.5 x 11 inches. You may not access any other resources or
use any electronic devices (including calculators, phones, or smart watches, among others) during the exam.
Using unauthorized resources or devices will be reported as academic misconduct to the university.

● If you require scratch paper, raise your hand and we will bring some to you.
● We will only scan your exam packet. We will not scan scratch paper or your notes sheet. We have included a

blank page in the exam packet. If you run out of space while answering a question, write your answer on that
blank page and clearly indicate that we should look for your answer there.

● In general, you are limited to Java concepts or syntax covered in class. You may not use break, continue, a
return from a void method, try/catch, or Java 8 stream/functional features.

● You are limited to the standard Java classes and methods listed on the provided reference sheet. You do not need
to write import statements.

● If you abandon one answer and write another, clearly cross out the answer(s) you do not want graded and draw
a circle or box around the answer you do want graded. When in doubt, we will grade the answer that appears in
the space indicated, and the first such answer if there is more than one.

● Answers must be written as proper Java code. Pseudocode or comments will not be graded.
● The exam is not graded on code quality. You are not required to include comments.
● You are also allowed to abbreviate System.out.print and System.out.println as S.o.p and S.o.pln

respectively. You may NOT use any other abbreviations.

Grading:
● There are six problems. Each problem will receive a single E/S/N grade.
● Minor syntax errors will be ignored as long as it is unambiguous what was intended (e.g. forgetting a semicolon,

misspelling a variable name where there is only one close option). Major syntax errors, or errors where it is
unclear what was intended, may have an impact on your grade.

Advice:
● Read all questions carefully. Be sure you understand the question before you begin your answer.
● The questions are not necessarily in order of difficulty. Be sure you at least attempt every question.
● Write clearly and legibly. We cannot award credit for answers we cannot read.
● If you have questions, raise your hand to ask. The worst that can happen is we will say "I can’t answer that."
● Ask questions as soon as you have them. Do not wait until you have several questions.

Initial here to indicate you have read and agreed to these rules:

This page intentionally left blank
Nothing written on this page will be graded

1. Runtime Analysis
Analyze the worst-case running time of each method below. Choose the most accurate (fastest) correct
running time, if more than one choice is correct. Unless otherwise stated, n is the length of the input data
structure. None of the methods provided throw any exceptions.

Code O(1) O(log(n)) O(n) O(n2)

public void m(int[] data) {
 for (int i = data.length - 1; i > 0; i -= 2) {
 System.out.println(data[i]);

 }

}

public void m(int[] data) {
 for (int i = 0; i < 2147483647; i++) {
 System.out.println(data[i]);

 }

}

public void m(int[] data) {

 int n = data.length;
 for (double x = 0; x < n; x += 1.0 / n) {
 System.out.println(data[(int)x]);

 }

}

public void m(int[] data) {
 for (int i = data.length - 1; i > 0; i /= 2) {
 System.out.println(data[i]);

 }

}

Searching for a value in an array.

Searching for a value in a linked list.

Searching for a value in a binary tree.

Searching for a value in a binary search tree.

Searching for a value in a balanced binary search tree.

2. Inheritance and Polymorphism
Consider the following classes:

public interface GardenTool {

 public boolean isWorking();

 public void operate();

}

public abstract class HandTool
 implements GardenTool {

 public boolean isWorking() {

 return true;

 }

}

public class Rake extends HandTool {

 public void operate() {

 System.out.println(“Tidying leaves.”);

 }

 public void steppedOn() {

 System.out.println("Whack!");

 }

}

public class Trowel extends HandTool {

 public operate() {

 System.out.println(“Digging...”);

 }

}

public abstract class PowerTool

 implements GardenTool {

 private double powerRemaining;

 private double powerPerUse;

 public PowerTool(double powerPerUse) {

 this.powerRemaining = 1.0;

 this.powerPerUse = powerPerUse;

 }

 public boolean isWorking() {

 return powerRemaining > 0;

 }

 public void usePower() {

 this.powerRemaining -= powerPerUse;

 }

 public void recharge() {

 this.powerRemaining = 1.0;

 }

}

Part A: Fill in the blanks in the Lawnmower class on the next page so that the client code shown below will
produce the indicated output.

Lawnmower lm1 = new Lawnmower(0.2, 20);

Lawnmower lm2 = new Lawnmower(0.2, 50);

Lawnmower lm3 = new Lawnmower(0.5, 50);

for (int i = 0; i < 3; i++) {

 lm1.operate(); // prints Vroom

 lm2.operate(); // prints Vroom

 lm3.operate(); // prints Vroom

}

System.out.println(lm1.isWorking()); // prints false because lm1 has no more capacity

System.out.println(lm2.isWorking()); // prints true

System.out.println(lm3.isWorking()); // prints false because lm3 has no more power

(continued on next page...)

public class Lawnmower extends ______________ {

 // capacity in bag for more grass

 private int capacity;

 private int maxCapacity;

 public Lawnmower(double powerPerUse,
 int capacity) {

 _______________________;
 this.maxCapacity = capacity;

 this.capacity = capacity;

 }

 public boolean isWorking() {

 return _____________________________;

 }

 public void operate() {

 if (this.isWorking()) {

 this.usePower();

 this.capacity -= 10;

 }

 System.out.println("Vroom");

 }

 public void empty() {

 this.capacity = maxCapacity;

 System.out.println("Bag emptied!");

 }

}

Part B: Mark the appropriate option in each row below, according to whether the code will have a run-time
error, a compile-time error, or no error. If the code has no error, also say what it will print, if anything. If the code
has any kind of error, you do not need to say what the output is.

Each row is separate. Do not consider the code of previous rows when looking at the next row.

CE = Compile-time Error, RE = Run-time Error, NE = No Error

Code CE RE NE Output

HandTool x = new Rake();
x.operate();

PowerTool x = new LawnMower(0.1, 40);

System.out.println(x.isWorking());

PowerTool x = new Trowel();
x.operate();

HandTool x = new LawnMower(0.5, 100);

x.empty();

HandTool x = new Trowel();
System.out.println(x.isWorking());

PowerTool x = new LawnMower(0.33, 10);

((LawnMower) x).operate();

Trowel x = new Trowel();

((Rake) x).operate();

HandTool x = new Trowel();

((Rake) x).steppedOn();

3. Linked Lists
Part A: Reference Semantics
In the following table, the “Before” column shows a diagram of some linked nodes, the “Code” column specifies
some code to be applied to the nodes in the before diagram, and the “After” column shows a diagram of the
nodes after the code has been applied.

Complete the table, filling in either the before picture, the code, or the after picture. You should not create any
new ListNodes or modify any .data fields, and there should be only one instance of each node with a
specific value. The after picture does not need to show any temporary references that were created.

Your ListNode diagram format doesn’t have to match that of the problem so long as it is clear what you intend.
In your code, you may use as many temporary references as you’d like to accomplish your goal, but you may
not create any new ListNode objects.

Before Code After

q.next.next = q;
q = q.next;
q.next.next = null;

p.next.next.next = p;
q.next.next = p.next.next;
p.next.next = q;
q = q.next;
p = p.next;
p.next.next = null;
q.next.next.next = null;

Part B: Linked List Implementation
Implement the method set(int index, int element), which changes the value at the given index to be the
given element.

For example, suppose the variable list1 contains a reference to the following list:
 [4, 8, 15, 16, 23, 42]

Then after the call list1.set(2, 10) executes, list1 should contain a reference to this list:
 [4, 8, 10, 16, 23, 42]

Then, After the call list1.set(0, 10) executes, list1 should contain a reference to this list:
 [10, 8, 10, 16, 23, 42]

Provide an implementation of set for the LinkedIntList class. Remember that the data field of ListNode is
final! Assume that the only field that the LinkedIntList class has is front. Assume that the parameter index
is always in bounds. Your implementation may be either recursive or iterative, whichever is your preference!

4. Recursion Debugging
Consider a method class called printSeq(List<String> list, int n) that prints all sequences of
strings in list that are of length n. For example, suppose the contents of list are:

 list = [“A”, “B”, “C”]

Then, after a call to printSeq(list, 2) is made, the following 6 lines should be printed:

 [A, B]

 [A, C]

 [B, A]

 [B, C]

 [C, A]

 [C, B]

If the length of list is less than n, the code should throw an IllegalArgumentException.

Consider the following incorrect implementation of printSeq:

1 public static void printSeq(List<String> strs, int n){

2 if (strs.size() < n) {

3 throw new IllegalArgumentException();

4 }

5 printSeq(strs, n, new ArrayList<String>());

6 }

7

8

9 private static void printSeq(List<String> strs, int n, List<String> curr){

10 if (curr.size() == n) {
11 System.out.println(curr);
12 } else {
13 for (int i = 0; i < strs.size(); i++) {
14 String s = strs.remove(i);
15 curr.add(s);
16 printSeq(strs, n, curr);
17 curr.remove(curr.size()-1);
18 strs.add(s);
19 }
20 }
21 }
22

(Continued on following page)

Part A: When reviewing this implementation, you discover that the code contains a bug that is causing
it to not work as intended. Specifically, you find that some sequences are not being printed, and others
are being printed multiple times! You decide that you want to write a test that exposes the incorrect
behavior. Provide contents for list and n, then identify one sequence that should be printed but is not,
as well as one sequence that is printed more than once.

list = n =

printSeq(list, n);

Sequence that should be printed, but is not:

Sequence that is printed more than once:

Part B: You discover that the bug actually only requires a change to line 18! Fill in the following solution
with the fix that would make the solution work on the test case above.

1 public static void printSeq(List<String> names, int n) {

2 if (strs.size() < n) {

3 throw new IllegalArgumentException();

4 }

5 printSeq(names, n, new ArrayList<String>());

6 }

7

8

9 private static void printSeq(List<String> strs, int n, List<String> curr) {

10 if (curr.size() == n) {
11 System.out.println(curr);
12 } else {
13 for (int i = 0; i < strs.size(); i++) {
14 String s = strs.remove(i);
15 curr.add(s);
16 printSeq(strs, n, curr);
17 curr.remove(curr.size()-1);
18 strs.add(s);

19 __;
20 }
21 }
22 }

5. Binary (Search) Tree Comprehension
Part A: BST Insertion
Draw a binary search tree that would result if these elements were added to an empty tree in the following
order, where the nodes are ordered alphabetically:

Osono, Kiki, Broom, Tombo, Pie, Ursula, Jiji, Crow

Part B: Traversals
For this question you will reference the binary tree below:

We will consider the contents of the call stack while printing the tree’s elements using each of a pre-order,
in-order, and post-order traversal. Specifically, in this problem you will identify the contents of the call stack at
the point when the value 4 is printed by completing the table below.

For each row, we give an element of the tree. Each column represents a traversal type. To complete the table
you need to identify whether for that traversal (at the time 4 is printed):

A. A stackframe in which currentRoot holds that element has not yet been put on the call stack
B. A stackframe in which currentRoot holds that element is currently on the call stack
C. A stackframe in which currentRoot holds that element has been removed from the call stack

Write the letter of the correct choice in the corresponding cell.

Element Pre-Order In-Order Post-Order

10

8

6

2

Part C: Recursive Method Tracing
Consider the following method in the IntTree class:

 public int mystery(int n) {

 return mystery(overallRoot, n);

 }

 private int mystery(IntTreeNode curr, int n) {

 if (curr == null) {

 return 0;

 } else if (n == 0) {

 return 1;

 } else {

 return mystery(curr.left, n - 1) + mystery(curr.right, n - 1);

 }

 }

Draw a binary tree such that, if it were stored in the variable tree, the call tree.mystery(3) would return 3.

6. Binary Tree Programming
Write a method called fillToDepth to be added to the IntTree class (see the reference sheet). This method
should take a single integer parameter, depth, and should modify a tree to be full up to the specified depth
(that is, so that all nodes at a depth less than depth have exactly two children). All nodes added should contain
the value -1. The depth of a node in a binary tree is the distance from the root to that node. So, for example,
the root has a depth of 0, its children have a depth of 1, those nodes children have a depth of 2, and so on.

The following table shows the results of some example calls to fillToDepth.

Original Tree tree.fillToDepth(0) tree.fillToDepth(2)

empty tree

Notice that in some cases the tree is not modified (if the tree is already full to the specified depth). Notice also
that in some cases, multiple layers of new nodes may be needed. You may assume that depth is greater than
or equal to zero.

Write your solution on the next page.

Write your solution to problem #6 here:

7. Art (optional - no credit)
The CSE 123 TAs are a very hard-working group, dedicating a lot of time to serving the students of CSE 123
alongside their own schoolwork. However, every once in a while, they do find time for fun and relaxation. In the
space below, draw your TA as you envision them spending their free time. There is no credit for this work, but
your TAs are looking forward to seeing your work. 🙂 (Note that artistic ability is not required– even stick
figures or scribbles will bring a smile to your TA’s face.)

CSE 123 Final Exam Reference Sheet
(DO NOT WRITE ANY WORK YOU WANTED GRADED ON THIS REFERENCE SHEET. IT WILL NOT BE GRADED)

Methods Found in ALL collections (List, Set, Map)
clear() Removes all elements of the collection
equals(collection) Returns true if the given other collection contains the same elements
isEmpty() Returns true if the collection has no elements
size() Returns the number of elements in a collection
toString() Returns a string representation such as "[10, -2, 43]"

Methods Found in both List and Set (ArrayList, LinkedList, HashSet, TreeSet)

List<Type> Methods
add(index, value) Inserts given value at given index, shifting subsequent values right
indexOf(value) Returns first index where given value is found in list (-1 if not found)
get(index) Returns the value at given index
lastIndexOf(value) Returns last index where given value is found in list (-1 if not found)
remove(index) Removes/returns value at given index, shifting subsequent values left
set(index, value) Replaces value at given index with given value

Map<KeyType, ValueType> Methods

containsKey(key) true if the map contains a mapping for the given key
get(key) The value mapped to the given key (null if none)
keySet() Returns a Set of all keys in the map
put(key, value) Adds a mapping from the given key to the given value
putAll(map) Adds all key/value pairs from the given map to this map
remove(key) Removes any existing mapping for the given key
toString() Returns a string such as "{1=90, d=60, c=70}"
values() Returns a Collection of all values in the map

Math Methods
abs(x) Returns the absolute value of x
max(x, y) Returns the larger of x and y
min(x, y) Returns the smaller of x and y
pow(x, y) Returns the value of x to the y power
random() Returns a random number between 0.0 and 1.0
round(x) Returns x rounded to the nearest integer

add(value) Adds value to collection (appends at end of list)
addAll(collection) Adds all the values in the given collection to this one
contains(value) Returns true if the given value is found somewhere in this collection
iterator() Returns an Iterator object to traverse the collection's elements
remove(value) Finds and removes the given value from this collection
removeAll(collection) Removes any elements found in the given collection from this one
retainAll(collection) Removes any elements not found in the given collection from this one

String Methods
charAt(i) Returns the character in this String at a given index
contains(str) Returns true if this String contains the other's characters inside it
endsWith(str) Returns true if this String ends with the other's characters
equals(str) Returns true if this String is the same as str
equalsIgnoreCase(str) Returns true if this String is the same as str, ignoring capitalization
indexOf(str) Returns the first index in this String where str begins (-1 if not found)
lastIndexOf(str) Returns the last index in this String where str begins (-1 if not found)
length() Returns the number of characters in this String
isEmpty() Returns true if this String is the empty string
startsWith(str) Returns true if this String begins with the other's characters
substring(i, j) Returns the characters in this String from index i (inclusive) to j (exclusive)
substring(i) Returns the characters in this String from index i (inclusive) to the end
toLowerCase() Returns a new String with all this String’s letters changed to lowercase
toUpperCase() Returns a new String with all this String’s letters changed to uppercase
compareTo(str) Returns a negative number if this comes lexicographically (alphabetically) before

other, 0 if they’re the same, positive if this comes lexicographically after other.

JUnit Methods
assertEquals(expected, actual) Tests that expected equals actual (using .equals)
assertNotEquals(expected, actual) Tests that expected doesn’t equal actual (using .equals)
assertSame(expected, actual) Tests that expected equals actual (using ==)
assertNotSame(expected, actual) Tests that expected doesn’t equal actual (using ==)
assertTrue(actual) Tests that actual is true
assertFalse(actual) Tests that actual is false

Abstract Class Syntax

public abstract class AbstractClass{
 // an abstract class can contain fields
 private type name;

 // an abstract class can contain constructors
 public AbstractClass(...) {
 // initialize the object
 }

 public abstract returnType abstractMethod(...);

 public returnType implementedMethod(...) {
 ...
 }
}

Inheritance Syntax
public class Example extends BaseClass {
 private type field;
 public Example() {
 field = something;
 }
 public void method() {
 // do something
 }
}

 public abstract class AbstractExample {
 private type field;

 public void method() {
 // do something
 }

 public abstract void abstractMethod();
}

ArrayIntList Class
public class ArrayIntList implements IntList {
 private int[] elementData;
 private int size;

 public static final int DEFAULT_CAPACITY = 10;
 public ArrayIntList() {...}
 public void add(int value) {...}
 public int get(int index) {...}
 public String toString() {...}
 public int indexOf(int value) {...}
 public boolean contains(int value) {...}
 public void add(int index, int value) {...}
 public void remove(int index) {...}
 public void set(int index, int value) {...}
 public int size() {...}
}

LinkedIntList Class
public class LinkedIntList extends AbstractIntList {
 private ListNode front;

 public LinkedIntList() {...}
 public LinkedIntList(int[] nums) {...}
 public void add(int index, int value) {...}
 public int remove(int targetIndex) {...}
 public int size() {...}
 public int get(int index) {...}

 public static class ListNode {
 public final int data;
 public ListNode next;

 public ListNode(int data) {...}
 public ListNode(int data, ListNode next) {...}
 }
}

IntTree Class
public class IntTree {
 private IntTreeNode overallRoot;

 public IntTree() {...}
 public IntTree(int[] arr) {...}
 public boolean contains(int value) {...}
 public String toString() {...}
 public void replace(int toReplace, int newValue) {...}

 private static class IntTreeNode {
 public final int data;
 public IntTreeNode left;
 public IntTreeNode right;

 public IntTreeNode(int data) {...}
 public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {...}
 }
}

	CSE 123 Spring 2025 Practice Final Exam
	1. Runtime Analysis
	2.Inheritance and Polymorphism
	3.Linked Lists
	
	4. Recursion Debugging
	5.Binary (Search) Tree Comprehension
	
	6.Binary Tree Programming
	
	7.Art (optional - no credit)
	CSE 123 Final Exam Reference Sheet
	Methods Found in ALL collections (List, Set, Map)
	Math Methods
	String Methods
	JUnit Methods

