
Creative Project 3: BrettFeed Quiz

Specification

Background
The website BuzzFeed, now a media and news outlet, came to popularity on social media in part due 
to its quizzes. On these simple, interactive websites, users are presented with a series of choices or 
questions to respond to, after which they are given some sort of result-- a score, categorization, or 
recommendation, among other options. This format has been emulated on many other 
entertainment and social media platforms. (Of note, BuzzFeed did not invent this format, but is likely 
responsible for popularizing the types of quizzes currently prevalent on social media.)

In this assignment, you will implement a version of a BuzzFeed-style quiz that we have named 
"BrettFeed"*. 

*Brett would like to emphasize that this name was not his idea.

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Define data structures to represent compound and complex data

Structure data appropriately to efficiently solve a problem

Write functionally correct Java classes to represent binary trees

Produce clear and effective documentation to improve comprehension and maintainability of a 
method

Write methods that are readable and maintainable, and that conform to provided guidelines for 
style and implementation

System Structure
In our quizzes, users will be asked repeatedly to choose which of two options they prefer until they 
are presented with a final result. We will represent a quiz using a binary tree, where leaf nodes 
represent possible results, and non-leaf nodes (branches) represent choices the user will make. When 
a user takes a quiz, they will be presented with the choice from the root node of the tree. Based on 
their response, the system will traverse to either the left or right child of the root. If the node found is 
a leaf, the user will be shown their result. Otherwise, the process will repeat from the new node until 
a leaf is reached. Each node will also contain a number "score" which will be utilized in the creative 



extensions. You can assume that all scores are non-negative. See below for a full sample quiz and 
execution.

Quiz File Format
In addition to representing quizzes as a binary tree in our program, we will also read quizzes from 
and store quizzes to text files in a standard file format. In a quiz file, each node will be represented by 
a single line in the file containing the text for that node. 

"Choice" nodes (i.e. nodes that represent a choice between two options) will be written with the 
two choices separated by a single slash ( / ) character. When taking the quiz, choosing the 
option before the slash will move to the left child of the node, whereas choosing the option 
after the slash will move the right child of the node.

For example, red/blue   represents a choice between red and blue, where red is the "left" 
choice and blue is the "right" choice.

You may assume that no choice will contain a slash.

"Result" nodes will be written as the result option prefixed with the text END: .

For example, END:froot loops  represents a result node for the result "froot loops"

You may assume that no result will contain the exact text END: . 

Both kinds of nodes will have a dash ( - ) followed by an integer representing the score for that 
node.

Sample Quiz File

Here is a sample quiz file representing a quiz that asks users to choose between colors to find their 
preferred breakfast cereal. Notice that the file represents a pre-order traversal of the resulting tree. 
So, for example, "red/blue" is the root of the tree and "yellow/green" is the left child of the root. (This 
sample quiz has been provided to you as the file colors-cereals.txt .

red/blue-0
yellow/green-1
END:Froot Loops-3
END:Raisin Bran-5
purple/orange-2
END:Frosted Flakes-1
black/white-3
END:Rice Krispies-2
END:Fruity Pebbles-4

Tree Representation of Sample Quiz

Below is a visual representation of the tree (click to expand).



You may assume that each choice and result in a quiz is unique, and that no text appears as both a 
choice and a result. (For example, a quiz that asks the user to choose between "red" and "blue" will 
not also have either "red" or "blue" as a possible result.)

Required Class
You will implement a class called QuizTree  to represent a quiz as a binary tree. To earn an S on this 
assignment you must implement the following methods in your QuizTree  class:

public QuizTree(Scanner inputFile)

Constructs a new quiz based on the provided input. See the above "Sample Quiz File" section 
for the expected file format.

You may assume the provided input is in the correct format.

public void takeQuiz(Scanner console)

Allows the user to take the current quiz using the provided Scanner . This method should 
prompt the user to choose between the options at each node and traverse the tree until a leaf 
node is reached, keeping track of the score as they go. When a leaf is reached, the user's result 
and total score should be printed. See the below "Sample Executions - Taking Quiz" section for 
example output.

Note that we will refer to the total score of a path as the sum of the scores of every single 
node visited on that path.

public void export(PrintStream outputFile)

Print the current quiz to the provided output file. See the above "Sample Quiz File" section for 
the expected file format.

public void addQuestion(String toReplace, String choices, 
                        String leftResult, String rightResult)

Replace the node for the result toReplace  with a new node representing a choice between the 
choices in choices  leading to leftResult  and rightResult  respectively.



If toReplace  is not a possible result in the quiz, including if it is a choice rather than a result, do 
nothing.

toReplace  should be treated case-insensitive. 

For example say you want to replace the result 'Froot Loops' but the tree has a result with 
'fRoOT LoOps' the result should still be replaced.

You do not need to support replacing choice nodes; only results.

choices  will be in the same format as in the standard file. Namely it will look like "<left 
choice>/<right choice>-<score>"  where the choice that leads to the left result is in place of 
<left choice> , the choice that leads to the right result is in place of <right choice> , and the 
score of the new choice node is in place of <score> .

leftResult  and rightResult  will be in the format "<result>-<score>" .

QuizTreeNode  class

As part of writing your QuizTree  class, you should also create a public static inner class called 
QuizTreeNode  to represent the nodes of the tree. The contents of this class are up to you, but must 
meet the following requirements:

The fields of the QuizTreeNode  class must be public .

All data fields should be declared final  as well. This does not include fields representing 
the children of a node.

The QuizTreeNode  class must not contain any constructors or methods that are not used by 
the QuizTree  class.

The QuizTreeNode  class must not contain any logic necessary to take a quiz-- it should purely 
represent a node in the tree.

You must have a single QuizTreeNode  class that can represent both choices and results-- you 
should not create separate classes for the different types of nodes.

You may also not create a single base class or interface that two separate classes extend 
or implement. All nodes in the tree must be instances of the same class.

Sample Executions - Taking Quiz

Here are a few sample executions of taking the sample quiz above. User input is bold and 
underlined.

Do you prefer red or blue? red
Do you prefer yellow or green? green
Your result is: Raisin Bran
Your score is: 6

Do you prefer red or blue? blue 
Do you prefer purple or orange? purple
Your result is: Frosted Flakes
Your score is: 3



Do you prefer red or blue? blue
Do you prefer purple or orange? orange
Do you prefer black or white? black
Your result is: Rice Krispies
Your score is: 7

Do you prefer red or blue? green
  Invalid response; try again.
Do you prefer red or blue? white
  Invalid response; try again.
Do you prefer red or blue? neither!!!
  Invalid response; try again.
Do you prefer red or blue? Red
Do you prefer yellow or green? YELLOW
Your result is: Froot Loops
Your score is: 4

Notice in the last example that when the user types an invalid option, they should be informed their 
response was not valid and prompted again. Notice also that options should be case-insensitive. (For 
example, the program accepted Red  instead of red ).

Sample Output - Modifying Quiz

Suppose the sample quiz from the above "Sample Quiz File" section were stored in a QuizTree  called 
cereals , and the following call were made:

cereals.addQuestion("Froot Loops", "gold/silver-5", "Cheerios-3", "Frosted Mini Wheats-6");

Then, calling cereals.export("new-colors-cereals.txt")  would result in the following quiz in a 
file named new-colors-cereals.txt :

red/blue-0
yellow/green-1
gold/silver-5
END:Cheerios-3
END:Frosted Mini Wheats-6
END:Raisin Bran-5
purple/orange-2
END:Frosted Flakes-1
black/white-3
END:Rice Krispies-2
END:Fruity Pebbles-4

Below is a visual representation of the new tree (click to expand).



Notice that the result Froot Loops  is no longer available in the quiz. In its place is now a new choice 
node choosing between gold  and silver , which produce the results Cheerios  and Frosted Mini 
Wheats  respectively. These new nodes are colored green. Note that all three of these nodes should be 
newly constructed nodes, you should not modify the data of the existing result node to update the 
tree.

Implementation Requirements
To earn a grade higher than N on the Behavior and Concepts dimensions of this assignment, your 
core algorithms for each method must be implemented recursively. You will want to utilize 
the public-private pair technique discussed in class. You are free to create any helper methods 
you like, but the core of your implementations must be recursive.

Implementation Tips
Use Integer.parseInt(String s)  to convert a string representing a number into an integer.

You will likely want to represent the score  of a QuizTreeNode  using an int  to make 
mathematical computations easier.

Utilize the split  method of the String  class to split up a String  based on a passed-in string.

You should represent every set of choices as a a single choice node. For example, for the 
choices red/blue , you should only have a single node for these choices, not a node for the 
choice red  and another node for the choice blue .

The writeTree  and readTree  problems from sections 9 and 10 will be particularly helpful 
resources for implementing the export  method and constructor.

The sumPaths  activity for lecture 9 will be helpful for implementing the takeQuiz  method and 
understanding how to work with scores in general.

Code Quality Requirements
Similar to with linked lists, do not "morph" a node by directly modifying fields (especially when 
replacing a choice node with a result node or vice versa). Existing nodes can be rearranged in 
the tree, but adding a new value should always be done by creating and inserting a new node, 
not by modifying an existing one.



Expand

Look out for including additional base or recursive cases when writing recursive code. While 
multiple calls may be necessary, you should avoid having more cases than you need. Try to see 
if there are any redundant checks that can be combined!

Include helper methods as necessary to implement your program, but all extra methods should 
be private  (so outside code cannot call them). 

Limit redundancy across constructors with the this  keyword.

Make sure that all parameters within a method are used and necessary.

Comment your code following the Commenting Guide. You should write comments with basic 
info (a header comment at the top of your file), a class comment for your QuizTree  class, and a 
comment for every method.

Make sure to avoid including implementation details in your comments. In particular, for 
your object class, a client should be able to understand how to use your object effectively 
by only reading your class and method comments, but your comments should maintain 
abstraction by avoiding implementation details.

Make all fields in QuizTreeNode  as public, all fields in QuizTree  private, and avoid fields that 
are not necessary for solving the problem.

Creative Extension
To earn an E on this assignment, you must implement a void  method called creativeExtension  in 
your QuizTree  class. The method can take whatever parameters you require. Your 
creativeExtension  method must implement the functionality described in one of the following 
options:

Option 1: Cutoff 

Your method should allow a user to take the quiz just like in the takeQuiz  method. However, the 
method should prompt the user for a "cutoff" before beginning its traversal. Then, when the score of 
the path being traversed is greater than or equal to the inputted cutoff, it should stop prompting the 
user for input. Instead, the method should randomly select a result based on the remaining options 
from the path it has traversed and print it out as the result of the quiz. If a result is reached before the 
cutoff is reached, then simply print out the result like normal.

Below is a sample execution using the tree represented by colors-cereals.txt . User input is bold 
and underlined.

The tree for reference:



Expand

What is your cutoff? 2
Do you prefer red or blue? blue
You have reached the cutoff.
Your randomized result is: Rice Krispies
Your score is: 7

Note that one of Frosted Flakes , Rice Krispies , or Fruit Pebbles  should be randomly 
returned for this particular execution. Once we reach the purple/orange  choice node, our path's 
total score 2 (which is equal to the cutoff), so we stop asking for input and randomly generate the 
result. We still compute the total score of the path as usual and print that out.

Option 2: Trim

Your method should prompt the user for a "cutoff". Then, it should explore all possible paths in the 
tree and whenever a path's total score exceeds cutoff , it should replace that choice node with a 
random result further down in the path. If a result is reached before the cutoff  is reached, then the 
path will remain unchanged.

Below is a sample execution using the tree represented by colors-cereals.txt . User input is bold 
and underlined.

The tree for reference:

What is your cutoff? 2
Your tree has been trimmed!



Expand

Here is the resulting tree:

Note that we randomly chose one of the results to replace the choice node once our path's cost 
exceeds that of the cutoff. In particular, once we reach the purple/orange  choice node, our path's 
total score 2, so we replace the node with a random result further in the tree (in this case Rice 
Krispies ). On the left side, our path's cost only exceeds 2 once we reach a result, so no changes 
occur.

Option 3: Percentages

This method should determine the percentage of the "full score" of the tree that each result of the 
quiz contains and print them out. In other words, for every possible result in the quiz, compute its 
score (as the total score of the path to reach that node). Then, divide that score by the sum of all 
scores in the tree to get the percentage of the full score of the tree that the result covers.

Below is a sample execution using the tree represented by colors-cereals.txt .

The tree for reference:

Output after a call to this method:

Fruity Pebbles: 42.86%
Froot Loops: 19.05%
Raisin Bran: 28.57%
Frosted Flakes: 14.29%
Rice Krispies: 33.33%



Note that the order your results appear in doesn't matter. Additionally, we round the outputted 
percentages to two decimal places. We provide the private method roundTwoPlaces  to help with 
this. We compute each percentage by taking the sum of the path to reach a result and dividing it 
by the full sum of the tree. For example, this quiz's full sum is 21 and the sum of the path to reach 
the result Froot Loops  is 4. So, the percentage outputted is 4 / 21 = 0.19047... = 19.05%  for 
the result Froot Loops .

Custom Extension

If you would like, you may propose a different extension of your choice. Your proposed extension 
must be roughly similar in complexity to the above options and must materially change basic 
assignment. If you would like to propose a custom extension, you must post it in this Ed thread and 
receive approval.

Optional: Create Your Own Quiz!
As part of testing your program, you may want to create your own BrettFeed quiz in the file format 
specified above. If you do, we encourage you to share your creations with your classmates and the 
course staff in this Ed thread!



BrettFeed Quiz

BrettFeed_Quiz.zip

Starter code:

Instructions for running the code:

In VS Code:

Press the play button as usual. Follow the prompts in the terminal.

In Ed:

Go to the Terminal tab at the bottom

Click Activate Terminal. This will automatically run Client.java  and save output files 
to your workspace.

If the terminal is already active, click Reset to run again.

Click Mark to submit your code.



Reflection

Question 1

No response

Question 2

No response

Question 3

No response

Question 4

No response

Question 5

No response

The following questions will ask you practice metacognition to reflect on the topics covered on this 
assignment and your experience completing it. For each question, focus on your plan and/or process 
for working through the assignment along with the CS concepts. Think about things like how you 
organized your working time, what sorts of things tended to go wrong, and how you dealt with those 
errors or mistakes.

Please answer all questions.

How do you think using a binary tree structure to represent quizzes was helpful or beneficial? How 
might it have been detrimental? Think about both technical and socio-technical considerations.

What is another way we could have represented quizzes instead of using binary trees? What 
advantages and disadvantages do you think that representation would have had compared to the 
binary tree representation?

Describe how you went about testing your implementation. What specific situations and/or test cases 
did you consider? Why were those cases important?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?



Question 6

No response

Question 7

No response

Question 8

No response

Question 9

No response

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be 
close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear, 
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if 
you would like a response!)


