
Creative Project 3: BrettFeed Quiz

Specification

Background
The website BuzzFeed, now a media and news outlet, came to popularity on social media in part due
to its quizzes. On these simple, interactive websites, users are presented with a series of choices or
questions to respond to, after which they are given some sort of result-- a score, categorization, or
recommendation, among other options. This format has been emulated on many other
entertainment and social media platforms. (Of note, BuzzFeed did not invent this format, but is likely
responsible for popularizing the types of quizzes currently prevalent on social media.)

In this assignment, you will implement a version of a BuzzFeed-style quiz that we have named
"BrettFeed"*.

*Brett would like to emphasize that this name was not his idea.

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Define data structures to represent compound and complex data

Structure data appropriately to efficiently solve a problem

Write functionally correct Java classes to represent binary trees

Produce clear and effective documentation to improve comprehension and maintainability of a
method

Write methods that are readable and maintainable, and that conform to provided guidelines for
style and implementation

System Structure
In our quizzes, users will be asked repeatedly to choose which of two options they prefer until they
are presented with a final result. We will represent a quiz using a binary tree, where leaf nodes
represent possible results, and non-leaf nodes (branches) represent choices the user will make. When
a user takes a quiz, they will be presented with the choice from the root node of the tree. Based on
their response, the system will traverse to either the left or right child of the root. If the node found is
a leaf, the user will be shown their result. Otherwise, the process will repeat from the new node until
a leaf is reached. Each node will also contain a number "score" which will be utilized in the creative

extensions. You can assume that all scores are non-negative. See below for a full sample quiz and
execution.

Quiz File Format
In addition to representing quizzes as a binary tree in our program, we will also read quizzes from
and store quizzes to text files in a standard file format. In a quiz file, each node will be represented by
a single line in the file containing the text for that node.

"Choice" nodes (i.e. nodes that represent a choice between two options) will be written with the
two choices separated by a single slash (/) character. When taking the quiz, choosing the
option before the slash will move to the left child of the node, whereas choosing the option
after the slash will move the right child of the node.

For example, red/blue represents a choice between red and blue, where red is the "left"
choice and blue is the "right" choice.

You may assume that no choice will contain a slash.

"Result" nodes will be written as the result option prefixed with the text END: .

For example, END:froot loops represents a result node for the result "froot loops"

You may assume that no result will contain the exact text END: .

Both kinds of nodes will have a dash (-) followed by an integer representing the score for that
node.

Sample Quiz File

Here is a sample quiz file representing a quiz that asks users to choose between colors to find their
preferred breakfast cereal. Notice that the file represents a pre-order traversal of the resulting tree.
So, for example, "red/blue" is the root of the tree and "yellow/green" is the left child of the root. (This
sample quiz has been provided to you as the file colors-cereals.txt .

red/blue-0
yellow/green-1
END:Froot Loops-3
END:Raisin Bran-5
purple/orange-2
END:Frosted Flakes-1
black/white-3
END:Rice Krispies-2
END:Fruity Pebbles-4

Tree Representation of Sample Quiz

Below is a visual representation of the tree (click to expand).

You may assume that each choice and result in a quiz is unique, and that no text appears as both a
choice and a result. (For example, a quiz that asks the user to choose between "red" and "blue" will
not also have either "red" or "blue" as a possible result.)

Required Class
You will implement a class called QuizTree to represent a quiz as a binary tree. To earn an S on this
assignment you must implement the following methods in your QuizTree class:

public QuizTree(Scanner inputFile)

Constructs a new quiz based on the provided input. See the above "Sample Quiz File" section
for the expected file format.

You may assume the provided input is in the correct format.

public void takeQuiz(Scanner console)

Allows the user to take the current quiz using the provided Scanner . This method should
prompt the user to choose between the options at each node and traverse the tree until a leaf
node is reached, keeping track of the score as they go. When a leaf is reached, the user's result
and total score should be printed. See the below "Sample Executions - Taking Quiz" section for
example output.

Note that we will refer to the total score of a path as the sum of the scores of every single
node visited on that path.

public void export(PrintStream outputFile)

Print the current quiz to the provided output file. See the above "Sample Quiz File" section for
the expected file format.

public void addQuestion(String toReplace, String choices,
 String leftResult, String rightResult)

Replace the node for the result toReplace with a new node representing a choice between the
choices in choices leading to leftResult and rightResult respectively.

If toReplace is not a possible result in the quiz, including if it is a choice rather than a result, do
nothing.

toReplace should be treated case-insensitive.

For example say you want to replace the result 'Froot Loops' but the tree has a result with
'fRoOT LoOps' the result should still be replaced.

You do not need to support replacing choice nodes; only results.

choices will be in the same format as in the standard file. Namely it will look like "<left
choice>/<right choice>-<score>" where the choice that leads to the left result is in place of
<left choice> , the choice that leads to the right result is in place of <right choice> , and the
score of the new choice node is in place of <score> .

leftResult and rightResult will be in the format "<result>-<score>" .

QuizTreeNode class

As part of writing your QuizTree class, you should also create a public static inner class called
QuizTreeNode to represent the nodes of the tree. The contents of this class are up to you, but must
meet the following requirements:

The fields of the QuizTreeNode class must be public .

All data fields should be declared final as well. This does not include fields representing
the children of a node.

The QuizTreeNode class must not contain any constructors or methods that are not used by
the QuizTree class.

The QuizTreeNode class must not contain any logic necessary to take a quiz-- it should purely
represent a node in the tree.

You must have a single QuizTreeNode class that can represent both choices and results-- you
should not create separate classes for the different types of nodes.

You may also not create a single base class or interface that two separate classes extend
or implement. All nodes in the tree must be instances of the same class.

Sample Executions - Taking Quiz

Here are a few sample executions of taking the sample quiz above. User input is bold and
underlined.

Do you prefer red or blue? red
Do you prefer yellow or green? green
Your result is: Raisin Bran
Your score is: 6

Do you prefer red or blue? blue
Do you prefer purple or orange? purple
Your result is: Frosted Flakes
Your score is: 3

Do you prefer red or blue? blue
Do you prefer purple or orange? orange
Do you prefer black or white? black
Your result is: Rice Krispies
Your score is: 7

Do you prefer red or blue? green
 Invalid response; try again.
Do you prefer red or blue? white
 Invalid response; try again.
Do you prefer red or blue? neither!!!
 Invalid response; try again.
Do you prefer red or blue? Red
Do you prefer yellow or green? YELLOW
Your result is: Froot Loops
Your score is: 4

Notice in the last example that when the user types an invalid option, they should be informed their
response was not valid and prompted again. Notice also that options should be case-insensitive. (For
example, the program accepted Red instead of red).

Sample Output - Modifying Quiz

Suppose the sample quiz from the above "Sample Quiz File" section were stored in a QuizTree called
cereals , and the following call were made:

cereals.addQuestion("Froot Loops", "gold/silver-5", "Cheerios-3", "Frosted Mini Wheats-6");

Then, calling cereals.export("new-colors-cereals.txt") would result in the following quiz in a
file named new-colors-cereals.txt :

red/blue-0
yellow/green-1
gold/silver-5
END:Cheerios-3
END:Frosted Mini Wheats-6
END:Raisin Bran-5
purple/orange-2
END:Frosted Flakes-1
black/white-3
END:Rice Krispies-2
END:Fruity Pebbles-4

Below is a visual representation of the new tree (click to expand).

Notice that the result Froot Loops is no longer available in the quiz. In its place is now a new choice
node choosing between gold and silver , which produce the results Cheerios and Frosted Mini
Wheats respectively. These new nodes are colored green. Note that all three of these nodes should be
newly constructed nodes, you should not modify the data of the existing result node to update the
tree.

Implementation Requirements
To earn a grade higher than N on the Behavior and Concepts dimensions of this assignment, your
core algorithms for each method must be implemented recursively. You will want to utilize
the public-private pair technique discussed in class. You are free to create any helper methods
you like, but the core of your implementations must be recursive.

Implementation Tips
Use Integer.parseInt(String s) to convert a string representing a number into an integer.

You will likely want to represent the score of a QuizTreeNode using an int to make
mathematical computations easier.

Utilize the split method of the String class to split up a String based on a passed-in string.

You should represent every set of choices as a a single choice node. For example, for the
choices red/blue , you should only have a single node for these choices, not a node for the
choice red and another node for the choice blue .

The writeTree and readTree problems from sections 9 and 10 will be particularly helpful
resources for implementing the export method and constructor.

The sumPaths activity for lecture 9 will be helpful for implementing the takeQuiz method and
understanding how to work with scores in general.

Code Quality Requirements
Similar to with linked lists, do not "morph" a node by directly modifying fields (especially when
replacing a choice node with a result node or vice versa). Existing nodes can be rearranged in
the tree, but adding a new value should always be done by creating and inserting a new node,
not by modifying an existing one.

Expand

Look out for including additional base or recursive cases when writing recursive code. While
multiple calls may be necessary, you should avoid having more cases than you need. Try to see
if there are any redundant checks that can be combined!

Include helper methods as necessary to implement your program, but all extra methods should
be private (so outside code cannot call them).

Limit redundancy across constructors with the this keyword.

Make sure that all parameters within a method are used and necessary.

Comment your code following the Commenting Guide. You should write comments with basic
info (a header comment at the top of your file), a class comment for your QuizTree class, and a
comment for every method.

Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.

Make all fields in QuizTreeNode as public, all fields in QuizTree private, and avoid fields that
are not necessary for solving the problem.

Creative Extension
To earn an E on this assignment, you must implement a void method called creativeExtension in
your QuizTree class. The method can take whatever parameters you require. Your
creativeExtension method must implement the functionality described in one of the following
options:

Option 1: Cutoff

Your method should allow a user to take the quiz just like in the takeQuiz method. However, the
method should prompt the user for a "cutoff" before beginning its traversal. Then, when the score of
the path being traversed is greater than or equal to the inputted cutoff, it should stop prompting the
user for input. Instead, the method should randomly select a result based on the remaining options
from the path it has traversed and print it out as the result of the quiz. If a result is reached before the
cutoff is reached, then simply print out the result like normal.

Below is a sample execution using the tree represented by colors-cereals.txt . User input is bold
and underlined.

The tree for reference:

Expand

What is your cutoff? 2
Do you prefer red or blue? blue
You have reached the cutoff.
Your randomized result is: Rice Krispies
Your score is: 7

Note that one of Frosted Flakes , Rice Krispies , or Fruit Pebbles should be randomly
returned for this particular execution. Once we reach the purple/orange choice node, our path's
total score 2 (which is equal to the cutoff), so we stop asking for input and randomly generate the
result. We still compute the total score of the path as usual and print that out.

Option 2: Trim

Your method should prompt the user for a "cutoff". Then, it should explore all possible paths in the
tree and whenever a path's total score exceeds cutoff , it should replace that choice node with a
random result further down in the path. If a result is reached before the cutoff is reached, then the
path will remain unchanged.

Below is a sample execution using the tree represented by colors-cereals.txt . User input is bold
and underlined.

The tree for reference:

What is your cutoff? 2
Your tree has been trimmed!

Expand

Here is the resulting tree:

Note that we randomly chose one of the results to replace the choice node once our path's cost
exceeds that of the cutoff. In particular, once we reach the purple/orange choice node, our path's
total score 2, so we replace the node with a random result further in the tree (in this case Rice
Krispies). On the left side, our path's cost only exceeds 2 once we reach a result, so no changes
occur.

Option 3: Percentages

This method should determine the percentage of the "full score" of the tree that each result of the
quiz contains and print them out. In other words, for every possible result in the quiz, compute its
score (as the total score of the path to reach that node). Then, divide that score by the sum of all
scores in the tree to get the percentage of the full score of the tree that the result covers.

Below is a sample execution using the tree represented by colors-cereals.txt .

The tree for reference:

Output after a call to this method:

Fruity Pebbles: 42.86%
Froot Loops: 19.05%
Raisin Bran: 28.57%
Frosted Flakes: 14.29%
Rice Krispies: 33.33%

Note that the order your results appear in doesn't matter. Additionally, we round the outputted
percentages to two decimal places. We provide the private method roundTwoPlaces to help with
this. We compute each percentage by taking the sum of the path to reach a result and dividing it
by the full sum of the tree. For example, this quiz's full sum is 21 and the sum of the path to reach
the result Froot Loops is 4. So, the percentage outputted is 4 / 21 = 0.19047... = 19.05% for
the result Froot Loops .

Custom Extension

If you would like, you may propose a different extension of your choice. Your proposed extension
must be roughly similar in complexity to the above options and must materially change basic
assignment. If you would like to propose a custom extension, you must post it in this Ed thread and
receive approval.

Optional: Create Your Own Quiz!
As part of testing your program, you may want to create your own BrettFeed quiz in the file format
specified above. If you do, we encourage you to share your creations with your classmates and the
course staff in this Ed thread!

BrettFeed Quiz

BrettFeed_Quiz.zip

Starter code:

Instructions for running the code:

In VS Code:

Press the play button as usual. Follow the prompts in the terminal.

In Ed:

Go to the Terminal tab at the bottom

Click Activate Terminal. This will automatically run Client.java and save output files
to your workspace.

If the terminal is already active, click Reset to run again.

Click Mark to submit your code.

Reflection

Question 1

No response

Question 2

No response

Question 3

No response

Question 4

No response

Question 5

No response

The following questions will ask you practice metacognition to reflect on the topics covered on this
assignment and your experience completing it. For each question, focus on your plan and/or process
for working through the assignment along with the CS concepts. Think about things like how you
organized your working time, what sorts of things tended to go wrong, and how you dealt with those
errors or mistakes.

Please answer all questions.

How do you think using a binary tree structure to represent quizzes was helpful or beneficial? How
might it have been detrimental? Think about both technical and socio-technical considerations.

What is another way we could have represented quizzes instead of using binary trees? What
advantages and disadvantages do you think that representation would have had compared to the
binary tree representation?

Describe how you went about testing your implementation. What specific situations and/or test cases
did you consider? Why were those cases important?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

Question 6

No response

Question 7

No response

Question 8

No response

Question 9

No response

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

