
Creative Project 1: Abstract Strategy Games

Specification

Background
Strategy games are games in which players make a sequence of moves according to a set of rules 
hoping to achieve a particular outcome (e.g. a higher score, a specific game state) to win the game. 
Strategy games usually give players free choice about which moves to make (within the rules) and 
have little to no randomness or luck (e.g. rolling of dice, drawing of cards) involved. Abstract strategy 
games are a subset of strategy games usually characterized by a) perfect information (i.e. all players 
know the full game state at all times, and b) little to no theme or narrative around gameplay. Popular 
examples of abstract strategy games include: Chess, Checkers, Go, Tic-Tac-Toe, and many others.

In this assignment, you will implement a data structure to represent the game state of an abstract 
strategy game of your choice.

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Define a data structure to represent complex data

Write a Java class that implements a given interface

Produce clear and effective documentation to improve comprehension and maintainability of a 
class

Write a class that is readable and maintainable, and that conforms to provided guidelines for 
style, and implementation

Choosing a Game 
You may implement any abstract strategy game you choose, subject to the following requirements:

The game must be playable by exactly two players.

It is OK if the game you choose can be played by a different number of players as well, 
but you will implement the game for exactly two players.

Players must take turns making moves.

Both players must make moves following the same basic rules (i.e. gameplay must be 
symmetrical).

There must be no hidden information and no randomness in gameplay.



The game must have a clear end condition. 

When the game has ended, there must be a clearly determined winner (or the game ends in a 
tie).

Here are some suggestions for games to implement:

Chomp

Connect Four

Paper Tennis

See Wikipedia, Freeze-Dried Games, or Pencil and Paper Games for more inspiration. If you would 
like to implement a game not listed above, please post in this Ed thread to request approval. Note 
that you may not implement the game tic-tac-toe (see below). Requests for a custom game must 
be made by 11:59pm on Sunday, January 21 to allow enough time for review and approval before 
the deadline. (We will monitor the thread and approve on a rolling basis.)

Required Interface
You will implement a class to represent your chosen game. Your class should implement that 
AbstractStrategyGame  interface, which requires the following methods:

public String instructions();

Returns a string describing how to play the game. Must include how to read the game state 
returned by toString() , how to make a move (as used by makeMove() ), how the game ends, 
and who wins. Should also include any additional information important to allowing someone 
to play the game.

public String toString();

Constructs and returns a string representation of the current game state. This representation 
should contain all information that should be known to players at any point in the game, 
including board state (if any) and scores (if any).

public boolean isGameOver();

Returns true  if the game has ended, and false  otherwise.

public int getWinner();

Returns the (1-based) index of the player who has won the game, or -1  if the game is not over. 
If the game ended in a tie, returns 0 .

public int getNextPlayer();

Returns the (1-based) index of the player who will take the next turn. If the game is over, returns 
-1 .



Expand

Expand

Expand

public void makeMove(Scanner input);

Takes input from the parameter to specify the move the player with the next turn wishes to 
make, then executes that move. If any part of the move is illegal, throws an 
IllegalArgumentException .

Note: this is an unusual way to specify this method; it would be better design to take parameters that specify the move 
and leave the input to a client. However, since each game might have different information needed to specify a move, we 
cannot specify a single set of parameters that will always work.

Your class should also include at least one constructor, which may take any parameters you deem 
necessary. You may implement any additional private helper methods you like as well.

Implementation Requirements
Your game should be able to be run using the client program in Client.java . You should modify line 
6 of this file to construct an instance of your class, and you may create any additional variables or 
data to pass to your constructor as parameters, but you should not have to otherwise modify the file. 
Implement your class so that this client works as written.

A sample implementation of tic-tac-toe has been provided that you may use to see how certain 
implementation choices might be made. Because of this, you may not implement tic-tac-toe as 
your game. 

Grading Guidelines
As described in the Creative Project Grading Rubric, your implementation must meet basic 
requirements to earn an S, and must have an extension implemented to earn an E. For the three 
suggested games, the basic and extended requirements are as follows:

Chomp

Connect Four

Paper Tennis

If you would like to implement a different game, you will need specify what the basic and extended 
requirements will be as part of your proposal. Your proposed requirements should be similar in 
scope and complexity to the requirements for the four suggested games. Post in this Ed thread to 



propose a different game.

Assignment Requirements
For this assignment, you should follow the Code Quality guide when writing your code to ensure it is 
readable and maintainable. In particular, you should focus on the following requirements:

You should make all of your fields private and you should reduce the number of fields only to 
those that are necessary for solving the problem.

Each of your fields should be initialized inside of your constructor(s).

You should comment your code following the Commenting Guide. You should write comments 
with basic info (a header comment at the top of your file), a class comment for every class, and 
a comment for every method other than main.

Make sure to avoid including implementation details in your comments. In particular, for 
your object class, a client should be able to understand how to use your object effectively 
by only reading your class and method comments, but your comments should maintain 
abstraction by avoiding implementation details.

Any additional helper methods created, but not specified in the spec, should be declared 
private.



Abstract Strategy Games

AbstractStrategyGames.zip

Download starter code:



Reflection

Question 1

Question 2

No response

Question 3

No response

The following questions will ask you practice metacognition to reflect on the topics covered on this 
assignment and your experience completing it. For each question, focus on your plan and/or process 
for working through the assignment along with the CS concepts. Think about things like how you 
organized your working time, what sorts of things tended to go wrong, and how you dealt with those 
errors or mistakes.

Please answer all questions.

REQUIRED
You MUST answer this question to receive credit for the assignment

Which game did you implement? 

Chomp

Connect Four

Paper Tennis

Other

Describe how you implemented the state of your chosen game and why you chose that 
implementation.

Describe an alternate implementation you could have chosen for your game. What advantages and 
disadvantages do you think this alternative has compared to the implementation you chose?



Question 4

No response

Question 5

No response

Question 6

No response

Question 7

No response

Question 8

No response

Question 9

No response

Question 10

No response

Describe how you went about testing your implementation. What specific situations and/or test cases 
did you consider? Why were those cases important?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be 
close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear, 
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if 
you would like a response!)



Testing Comprehension Questions

Question 1

Question 2

What needs to be present in order to write/think of tests for a method?

Pre-Conditions (the appropriate values of the object and parameters in order for the method 
to run correctly)

Post-Conditions (what the method will accomplish – what it will print, return, or do to the 
object/parameters)

An implementation of the method (the code for the method)

None of the above

This is the specification of adding to a list at an index, from Java's website:

public void add(int index, E element)
Inserts the specified element at the specified position in this list. 
Shifts the element currently at that position (if any) and any subsequent 
elements to the right (adds one to their indices).

Parameters:

index  - index at which the specified element is to be inserted

element  - element to be inserted

Throws:

IndexOutOfBoundsException  - if the index is out of range (index < 0 || index > size())  

What would be some goals for testing this add  method?

That it will throw an exception if the specified element is null



Question 3

Question 4

No response

That it shifts elements to the right of the added element

That it adds the specified element to the correct position

That it throws an IndexOutOfBoundsException  if the index is negative or greater than the 
size of the list

That the size of the list goes up by one after adding

Why do we write tests?

To check that our code fits the specification (that it works as expected)

To get an understanding of what our code is supposed to be doing

To understand the different inputs that our method may have to accept

All of the above

What are three distinct tests that you could write for your abstract strategy game? Make sure to 
specify what you would be testing, the inputs, and the expected outputs.



� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your 
work.

I attest that the work I am about to submit is my own and was completed according to the course 
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any 
outside resources, they are allowed and have been properly cited. If I have any concerns about this 
policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)


