
Creative Project 0: Ciphers

Background

Background
Cryptography (not to be confused with cryptocurrency and blockchain) is a branch of Computer
Science and Mathematics concerned with turning input messages (plaintexts) into encrypted ones
(ciphertexts) for the purpose of discrete transfer past adversaries. The most modern and secure of
these protocols are heavily influenced by advanced mathematical concepts and are proven to leak 0
information about the plaintext. As the Internet itself consists of sending messages through other
potentially malicious devices to reach an endpoint, this feature is crucial! Without it, much of the
Internet we take for granted would be impossible to implement safely (giving credit card info to
retailers, authenticating senders, secure messaging, etc.) as anyone could gather and misuse anyone
else's private information.

In this assignment, you'll be required to implement a number of classical ciphers making use of your
knowledge of abstract classes and inheritance to reduce redundancy whenever possible. Once
completed, you should be able to encode information past the point of any human being able to
easily determine what the input plaintext was!

The course staff would like to reinforce a message commonly said by the security and privacy community:
"Never roll your own crypto". In other words, do not use this assignment in any future applications where
you'd like to encrypt some confidential user information. Classical ciphers are known to be remarkably old and
weak against the capabilities of modern computation and thus anything encrypted with them should not be
considered secure.

Characters in Java

In this assignment, a potentially important note is that behind-the-scenes Java assigns each character
an integer value. (e.g. 'A' is 65, 'a' is 97, and so on). This mapping is defined by the ASCII (the American
Standard Code for Information Interchange) standard, and can be seen in the following ASCII table:

Because Java has this inherent mapping, we are able to perform the exact same operations on
characters as we can on integers. This includes addition 'A' + 'B' = 131 , subtraction 'B' - 'A' =
1 , and boolean expressions 'A' < 'B' = true . We can also easily convert between the integer and
character representations by casting (int)('A') = 65 or (char)(66) = 'B' .

Specification

System Structure
We will represent ciphers with following provided abstract class. You may modify the constants of
this class to help with debugging your implementations, but you must revert any changes before
marking your assignment.

import java.util.*;
import java.io.*;

// Represents a classical cipher that is able to encrypt a plaintext into a ciphertext, and
// decrypt a ciphertext into a plaintext. Also capable of encrypting and decrypting entire files

public abstract class Cipher {
 // The minimum character able to be encrypted/decrypted by any cipher
 public static final int MIN_CHAR = (int)('A');

 // The maximum character able to be encrypted/decrypted by any cipher
 public static final int MAX_CHAR = (int)('Z');

 // The total number of characters able to be encrypted/decrypted by any cipher
 // (aka. the encodable range)
 public static final int TOTAL_CHARS = MAX_CHAR - MIN_CHAR + 1;

 // Behavior: Applies this Cipher's encryption scheme to the file with the
 // given 'fileName', creating a new file to store the results.
 // Exceptions: Throws a FileNotFoundException if a file with the provided 'fileName'
 // doesn't exist
 // Returns: None
 // Parameters: 'fileName' - The name of the file to be encrypted
 public void encryptFile(String fileName) throws FileNotFoundException {
 fileHelper(fileName, true, "-encrypted");
 }

 // Behavior: Applies the inverse of this Cipher's encryption scheme to the file with the
 // given 'fileName' (reversing a single round of encryption if previously applied)
 // creating a new file to store the results.
 // Exceptions: Throws a FileNotFoundException if a file with the provided 'fileName'
 // doesn't exist
 // Returns: None
 // Parameters: 'fileName' - The name of the file to be decrypted
 public void decryptFile(String fileName) throws FileNotFoundException {
 fileHelper(fileName, false, "-decrypted");
 }

 // Behavior: Reads from an input file with 'fileName', either encrypting or decrypting
 // depending on 'encrypt', printing the results to a new file with 'suffix'

Expand

 // appended to the input file's name
 // Exceptions: Throws a FileNotFoundException if a file with the provided 'fileName'
 // doesn't exist
 // Returns: None
 // Parameters: 'fileName' - the name of the file to be encrypted / decrypted
 // 'encrypt' - whether or not encryption should occur
 // 'suffix' - appended to the fileName when creating the output file
 private void fileHelper(String fileName, boolean encrypt, String suffix) throws FileNotFoundException {
 Scanner sc = new Scanner(new File(fileName));
 String out = fileName.split("\\.txt")[0] + suffix + ".txt";
 PrintStream ps = new PrintStream(out);
 while(sc.hasNextLine()) {
 String line = sc.nextLine();
 ps.println(encrypt ? encrypt(line) : decrypt(line));
 }
 }

 // Behavior: Applies this Cipher's encryption scheme to 'input', returning the result
 // Exceptions: None
 // Returns: The result of applying this Cipher's encryption scheme to `input`
 // Parameters: 'input' - the string to be encrypted
 public abstract String encrypt(String input);

 // Behavior: Applies this inverse of this Cipher's encryption scheme to 'input' (reversing
 // a single round of encryption if previously applied), returning the result
 // Exceptions: None
 // Returns: The result of applying the inverse of this Cipher's encryption scheme to `input`
 // Parameters: 'input' - the string to be decrypted
 public abstract String decrypt(String input);
}

Remember: you should be making use of the class constants within this class rather than hardcoding
character values within your implementations.

Required Operations
You must implement the following encryption schemes in this assignment. Note that the following
descriptions often refer to the "encodable/encryptable range," which is defined by the
Cipher.MIN_CHAR (lowest value in the range), Cipher.MAX_CHAR (highest value in the range), and
Cipher.TOTAL_CHARS (total number of characters within the range) constants within Cipher.java

Substitution.java

The Substitution Cipher is likely the most commonly known encryption algorithm. It consists of
assigning each input character a unique output character, ideally one that differs from the original,
and replacing all characters from the input with the output equivalent when encrypting (and vice-

versa when decrypting).

In our implementation, this mapping between input and output will provided via a shifter
string. The shifter will represent the output characters corresponding to the input character at
the same relative position within the overall range of encodable characters (defined by
Cipher.MIN_CHAR and Cipher.MAX_CHAR). To picture this, we can vertically align this shifter
string with the encryptable range and look at the corresponding columns to see the appropriate
character mappings. Consider the following example:

Given the shifter string above, the plaintext "FAD" would be encrypted into "FGE" and the
ciphertext "CGE" decrypts into the plaintext "BAD". Below are more in-depth descriptions of the
required behavior:

public Substitution()

Constructs a new Substitution Cipher with an empty shifter.

public Substitution(String shifter)

Constructs a new Substitution Cipher with the provided shifter.

Should throw an IllegalArgumentException if the length of the shifter doesn't match the
number of characters within our Cipher's encodable range (Cipher.TOTAL_CHARS), contains
a duplicate character, or any individual character falls outside the encodable range (<

Expand

Cipher.MIN_CHAR or > Cipher.MAX_CHAR)

public void setShifter(String shifter)

Updates the shifter for this Substitution Cipher.

Should throw an IllegalArgumentException if the length of the shifter doesn't match the
number of characters within our Cipher's encodable range, or any individual character falls
outside the encodable range

public String encrypt(String input)

Applies this Substitution Cipher to the input, returning the result.

Applying the Substitution Cipher is defined as replacing each input character with the
corresponding character in shifter at the same relative position within the ordered
encodable range.

Since we're allowing clients to set a shifter after construction, this method should throw an
IllegalStateException if the shifter is null or empty.

public String decrypt(String input)

Inverses this Substitution Cipher on the input, returning the result.

Inversing the Substitution Cipher is defined as replacing each input character with the
corresponding character in the ordered encodable range at the same relative position
within shifter .

Since we're allowing clients to set a shifter after construction, this method should throw an
IllegalStateException ifthe shifter is null or empty.

CaesarShift.java

This encryption scheme draws inspiration from the aforementioned Substitution Cipher, except it
involves shifting all encodable characters to the right by some provided shift amount. In the case
that shift is 1, any character c would be replaced with (char)(c + 1) when encrypting. If shift is
two, c would be replaced with (char)(c + 2) . Importantly, if characters map to a value greater
than the maximum encryptable character (think shift=1, (char)(Cipher.MAX_CHAR) -> (char)
(Cipher.MAX_CHAR + 1)) the replacement character should be found by looping back around to
the front of the encodable range (so if shift=1, then (char)(Cipher.MAX_CHAR) would actually
map to (char)(Cipher.MIN_CHAR)).

HINT: This mapping from an input character c and it's encrypted output o after a shift shift can be
seen in the following expression:

o = (char)(Cipher.MIN_CHAR + (c + shift - Cipher.MIN_CHAR) % Cipher.TOTAL_CHARS)

Where we add shift to c, get the displacement of the result by subtracting Cipher.MIN_CHAR , mod it by
Cipher.TOTAL_CHARS in the event that we go past the maximum encryptable character, and re-add the
new displacement to Cipher.MIN_CHAR to get the encrypted result. Similarly, we can define the inverse
expression:

c = (char)(Cipher.MIN_CHAR + (o - shift - Cipher.MIN_CHAR + Cipher.TOTAL_CHARS) %
Cipher.TOTAL_CHARS)

Where we remove shift from o, get the displacement of the result by subtracting Cipher.MIN_CHAR , add
Cipher.TOTAL_CHARS in the event that the displacement is negative, mod it by Cipher.TOTAL_CHARS to
re-map large displacements to valid ones, and re-add the new displacement to Cipher.MIN_CHAR to get
the decrypted result.

An alternative method of approaching this problem can be seen through the following diagram:

Note that this diagram outlines the process of creating shifter in which we physically move the
character at the front of the encodable range to the end (and in doing so shift all other characters

Expand

to the left). As the shift value above is just one, this process is repeated one time. If the shift value
was two, we'd do it twice.

HINT: What data structure would help with this process of removing from the front and adding to the
back?

After creating the shifter string, the process of encrypting / decrypting should exactly match that
of the Substitution cipher (replace each character of the input with the character at the same
relative position in shifter for encrypting, or vice-versa for decrypting).

Your solution should pick one of the two above approaches to implement such that plaintext
characters are shifted in the encodable range by a given amount. Below are more in-depth
descriptions of the required behavior:

public CaesarShift(int shift)

Constructs a new CaesarShift with the provided shift value

An IllegalArgumentException should be thrown in the case that shift <= 0

public String encrypt(String input)

Applies the CaesarShift Cipher on the input, returning the result.

Applying the CaesarShift Cipher is defined as replacing each input character with the
corresponding character in shifter at the same relative position. This shifter
should be created by moving all characters within the range to the left shift times,
moving the value at the front to the end each time.

public String decrypt(String input)

Inverses the CaesarShift Cipher on the input, returning the result

Inversing the CaesarShift Cipher is defined as replacing each input character with the
corresponding character in the encodable range at the same relative position within
shifter . This shifter should be created by moving all characters within the range to
the left shift times, moving the value at the front to the end each time.

CaesarKey.java

Much like the CaesarShift, the CaesarKey scheme also builds off of the base Substitution Cipher.
Instead, this one involves placing a key at the front of the substitution, with the rest of the
alphabet following normally (minus the characters included in the key). This means that the first
character in our encodable range ((char)(Cipher.MIN_CHAR)) would be replaced by the first
character within the key. The second character in the encodable range ((char)(Cipher.MIN_CHAR
+ 1) would be replaced by the second character within the key. This process would repeat until

there are no more key characters, in which case the replacing value would instead be the lowest
unused character within the encodable range. Consider the following diagram for a visual
explanation:

Note that the shifter string starts with "DEF" (the key) and then is followed by the encodable range
in its original order minus the characters 'D', 'E', and 'F' as they're already in the shifter.

After creating the shifter string, the process of encrypting / decrypting should exactly match that
of the Substitution cipher (replace each character of the input with the character at the same
relative position in shifter for encrypting, or vice-versa for decrypting)

Below are more in-depth descriptions of the required behavior:

public CaesarKey(String key)

Constructs a new CaesarKey with the provided key value

This constructor should throw an IllegalArgumentException in the case that the key is

Expand

empty, it contains a character outside our range of valid characters, or it contains any
duplicate characters

public String encrypt(String input)

Applies the CaesarKey Cipher on the input, returning the result.

Applying the CaesarKey Cipher is defined as replacing each input character with the
corresponding character in shifter at the same relative position. This shifter
should be created by appending the key to the rest of the encodable range in order.

public String decrypt(String input)

Inverses the CaesarKey Cipher on the input, returning the result.

Inversing the CaesarKey Cipher is defined as replacing each input character with the
corresponding character in the ordered encodable range at the same relative position
within shifter . This shifter should be created by appending the key to the rest of
the encodable range in order.

MultiCipher.java

The above ciphers are interesting, but on their own they're pretty solvable. A more complicated
approach would be to chain these ciphers together to really confuse any possible adversaries! This
can be accomplished by passing the original input through a list of ciphers one at a time, using the
previous cipher's output as the input to the next. Repeating this all the way through the entire list
results in the final encrypted string. Decrypting would then involve the opposite of this: starting
with the last cipher and working backward through the cipher list until the plaintext is revealed.
Below is a diagram of these processes, passing inputs through each layer of the cipher list.
Consider the following diagram demonstrating the process of encrypting/decrypting a MultiCipher
consisting of 3 internal ciphers: a CaesarShift of 4, a CaesarKey with key "BAG", and a CaesarShift
of 8.

On the left in the above example, we start with the plaintext: CABBAGE hoping to encrypt it.
Encrypting this through the first layer (a CaesarShift of 4) results in the intermediary encrypted
message GEFFEDB . This intermediary value is then used as input to the next layer (a CaesarKey
with key "BAG") resulting in the second intermediary encrypted message FDEEDCA . This process is
repeated one last time, resulting in the final ciphertext of GEFFEDB .

On the right in the above example, we start at the ciphertext: DEDDBC hoping to decrypt it.
Decrypting this through the last layer (a CaesarShift of 8) results in the intermediary still-encrypted
message CDCCAB . This intermediary value is then used as input to the next layer (a CaesarKey with
key "BAG") resulting in the second intermediary still-encrypted message DEDDBA . This process is
repeated one last time, resulting in the final plaintext of GAGGED .

This is what you'll be implementing in this class: given a list of ciphers, apply them in order to
encrypt or in reverse order to decrypt a given message. Below are more in-depth descriptions of
the required behavior:

public MultiCipher(List<Cipher> ciphers)

Constructs a new MultiCipher with the provided List of Ciphers

Should throw an IllegalArgumentException if the given list is null

Expand

public String encrypt(String input)

Applies the MultiCipher Cipher on the input, returning the result.

Applying the MultiCipher Cipher is defined as encrypting input using the first cipher,
then taking the result and using that as input to the second cipher's encrypt method.
This should repeat for every cipher until the last one within the MultiCipher's cipher
list.

public String decrypt(String input)

Inverses the MultiCipher Cipher on the input, returning the result.

Inversing the MultiCipher Cipher is defined as decrypting input using the last cipher,
then taking the result and using that as input to the second-to-last cipher's decrypt
method. This should repeat for every cipher until the first one within the MultiCipher's
cipher list.

Use Your Ciphers!
Now that you're done, set Cipher.MIN_VALUE = (int)(' ') and Cipher.MAX_VALUE = (int)('}') .
Then, using the Client class create a MultiCipher consisting of the following: a CaesarShift(4) , a
CaesarKey("123") , a CaesarShift(12) , and a CaesarKey("lemon") . Decrypt the following!

Yysu(zer(vyly xylw("m(!xy (q ywl}ul!)(Oyt(&e"({le$($xq!(!xy (}u qwu($q (ruvenu(tusn&m!ylwJ(E1

Creative Portion
For the creative portion of this assignment, you'll be implementing another cipher that interests you!
Below is the recommended list:

1. Concealment

2. SubsitituionRandom

3. Transposition

4. Vigenere

5. Your choice!

1. Concealment

This scheme involves confusing any potential adversary with a jumble of random characters,
placing the original message at specific locations within the encrypted message. Although this can
manifest a variety of ways (the character that starts every sentence in a paragraph, the left-most
words on a physical page of paper, etc.), in this class you'll be placing the characters from the

original message after a specified number of random "filler" characters. For example, if filler is 2
then you would construct your ciphertext by placing 2 random characters from the encodable
range within your ciphertext, followed by the first character from the plaintext. Then another 2
random characters followed by the second character from the plaintext. Repeat this process until
you run out of characters in the plaintext and you have your encrypted message!

Decrypting involves the opposite - given a string full of junk characters, take out the important
ones to form the plaintext. Given you know the filler value, this process just involves
concatenating together every (filler + 1)th character from the string. Below is a visual
representation of this process:

HINT: To generate "junk" characters, you can randomly generate integers between Cipher.MIN_CHAR and
Cipher.MAX_CHAR inclusive and cast them into characters (more information in the "Background" slide)

Your solution should contain the following behavior:

public Concealment(int filler)

Constructs a new Concealment with the provided filler value

An IllegalArgumentException should be thrown in the case that filler is less than or equal
to zero.

public String encrypt(String input)

Applies the Concealment Cipher on the input, returning the result.

Expand

Applying the Concealment Cipher is defined as placing filler random characters
before each character from input .

public String decrypt(String input)

Inverses the Concealment Cipher on the input, returning the result.

Inversing the Concealment Cipher is defined as concatenating together each filler +
1 th character from input .

2. SubstitutionRandom

Here, you'll implement another variation of a Substitution Cipher that uses a randomly shuffled
shifter string. This initially sounds impossible as if we randomly create the shifter string, how do
we possibly decrypt? The answer lies in being able to control a Random object in Java via a seed
value. Any two Random objects constructed with the same seed will produce random values in
the same order as one another. Below is an example:

int seed = 123;
Random rand = new Random(seed);
Random rand2 = new Random(seed);
System.out.println(rand.nextInt(10) == rand2.nextInt(10));

Thus, with just the seed value used to create a "random" shifter string, you should be able to
recreate it on decrypting (so long as you follow the same steps to do so). Note that this means
your implementation must store the seed somewhere in the encrypted message such that it is
retrievable on decryption (i.e. front, end, etc.).

HINT: In creating this "randomly" shuffled shifter string, we recommend you think of the encodable range
as a List of all characters able to be encoded by your cipher. Coincidentally, there exists a method that
will shuffle the values of a List with a given random object called Collections.shuffle(list, rand) .
We recommend using this approach in your solution.

You should randomly generate a new seed every time you encrypt a message. The length of the
seed will be determined by a digits parameter provided to the constructor. For example, if
digits is 4, valid seeds include: 3291, 4039, 6587, 1320, etc.

NOTE: It is your choice if you want to include leading 0's in the number of digits a number has. Alternatively
stated, you get to pick whether given 3 digits if the smallest number will be 000 or 100.

After "randomly" creating the shifter string from the given seed value, the process of encrypting /
decrypting should exactly match that of the Substitution cipher (replace each character of the
input with the character at the same relative position in shifter for encrypting, or vice-versa for
decrypting).

Expand

Your solution should contain the following behavior:

public SubstitutionRandom(int digits)

Constructs a new SubstitutionRandom Cipher with the provided number of digits

An IllegalArgumentException should be thrown if digits <= 0 or if it is greater than the
max number of digits for an integer, which is 9. (Note that Integer.MAX_VALUE is
2,147,483,647 which is 10 digits, but larger 10-digit numbers can't be represented, so we
subtract one to get 9).

NOTE: If you want a non-magic number way to calculate get this maximum integer width of 9, you can use
the following expression:

(int)(Math.floor(Math.log10(Integer.MAX_VALUE)))

public String encrypt(String input)

Applies the SubstutionRandom Cipher on the input, returning the result.

Applying the SubstutionRandom Cipher is defined as replacing each input character
with the corresponding character in shifter at the same relative position. This
shifter should be created by "randomly" shuffling all characters within the
encodable range dependent on a seed value that is then placed somewhere in the
ciphertext.

public String decrypt(String input)

Inverses the SubstutionRandom Cipher on the input, returning the result.

Inversing the SubstutionRandom Cipher is defined as replacing each input character
with the corresponding character in shifter at the same relative position. This
shifter should be created by "randomly" shuffling all characters within the
encodable range dependent on a seed value that is present in the input and ignored
upon decrypting.

You may assume that only a previously encrypted input is provided on decryption (namely
that a seed value will be present at the appropriate location within the input).

3. Transposition

Unlike our previous ciphers, a transposition cipher involves shuffling the positions of characters
from the plaintext rather than substituting them with new ones. Most of these involve creating a
grid with a certain width, filling it in with an input string, and then traversing the grid in a different
way to get the encryption. While there are some fun and interesting traversal options, in this class
we'll be implementing the simplest: alternating between row and column. This means when

encrypting, you'll first create a grid of the desired width (with enough rows to fit the plaintext
completely), then fill in character values from the plaintext row-by-row, and finally get the
ciphertext by traversing the populated grid column-by-column.

It's important to acknowledge that we have no guarantee the length of the input will be an exact
multiple of the width of the grid (meaning there might be empty spots left over after filling row-by-
row). To counteract this, you should use a character value outside of the encodable range to
indicate that something is "empty" - we recommend Cipher.MAX_CHAR + 1 .

When decrypting, a similar process is followed: first create a grid of the desired width (with
enough rows to fit the ciphertext completely), then fill in character values from the ciphertext
column-by-column, and finally get the plaintext by traversing the populated grid row-by-row.
When decrypting, you should ignore the "empty" characters previously inserted to fill the grid
when encrypting. Below is a visual representation of this process:

Again, while alternative traversals are possible, we recommend this approach as it is the easiest to
implement (if you choose something different note that your implementation will fall into the
"Your choice" category).

Your solution should contain the following behavior:

public Transposition(int width)

Constructs a new Transposition cipher with the provided grid width value

An IllegalArgumentException should be thrown if width <= 0 (not possible)

public String encrypt(String input)

Applies the Transposition Cipher on the input, returning the result.

Applying the Transposition Cipher is defined as using the input to first populate a
grid with the appropriate width row-by-row, then traversing column-by-column to
compute the resulting ciphertext. Any empty spots should be populated with
Cipher.MAX_CHAR + 1

Expand

public String decrypt(String input)

Inverses the Transposition Cipher on the input, returning the result.

Inversing the Transposition Cipher is defined as using the input to first populate a
grid with the appropriate width column-by-column, then traversing row-by-row to
compute the resulting plaintext. Any spots populated with Cipher.MAX_CHAR + 1
should be ignored.

Additionally, when decrypting, you should throw an IllegalArgumentException when the
length of the input is not a multiple of width (input.length() % width != 0) as that
means it isn't a valid previous encryption.

4. Vigenere

The Vigenère cipher is a hybrid between the CaesarKey and CaesarShift. It is created with a key
that is repeated such that its length matches that of the input plaintext. When encrypting, a
CaesarShift is applied to each character, where the shift value is determined by the current key
character's displacement within the encodable range (i.e. shift = repeatKey.charAt(i) -
Cipher.MIN_CHAR). For example, if we encrypt the plaintext is HELLO with the key is CSE , we first
have to repeat the key until it matches the length of the input (CSECS), then as the first character is
C the first shift value is 35 ('C' - Cipher.MIN_CHAR), then this shift is applied to H resulting in
the encrypted character k ('H' + 35 = 107 = (int)'k'). Repeating this process for all
characters in the input computes the appropriate ciphertext!

Decrypting is a similar process: repeat the key until it matches the length of the ciphertext, then
calculate the first shift value based on the displacement of the first key character (shift =
repeatedKey.charAt(i) - Cipher.MIN_CHAR), then remove shift from the corresponding
ciphertext character to decrypt it.

NOTE: Remember for both encrypting and decrypting, if you ever go past either end of the encodable
range (< Cipher.MIN_CHAR or > Cipher.MAX_CHAR) you should loop back around to the other end. This
process is described more in-depth in the CaesarShift section above.

Below is a diagram outlining the process visually:

NOTE: Before continuing, trace through the above example and make sure you understand how to encrypt
and decrypt an input given a key.

Interestingly, unlike other classical ciphers the Vigenere has no guarantee that a single character in
the plaintext will always map to the same character in the ciphertext (AB will become CC if the
key is !" ; both A and B become C !). This makes it much more complicated to crack as an
adversary.

Your solution should contain the following behavior:

public Vigenere(String key)

Constructs a new Vigenere Cipher with the provided key

An IllegalArgumentException should be thrown if the key is empty

public String encrypt(String input)

Applies the Vigenere Cipher on the input, returning the result.

Applying the Vigenere Cipher is defined as repeating key to the same length as input
and shifting each character in input to the right based on the displacement of the
corresponding character in key within the encodable range (key.charAt(i) -
Cipher.MIN_CHAR). If the shifted value falls outside the encodable range (>
Cipher.MAX_CHAR) it should loop back around to the beginning.

public String decrypt(String input)

Inverses the Vigenere Cipher on the input, returning the result.

Inversing the Vigenere Cipher is defined as repeating key to the same length as input
and shifting each character in input to the left based on the displacement of the
corresponding character in key within the encodable range (key.charAt(i) -
Cipher.MIN_CHAR). If the shifted value falls outside the encodable range (<
Cipher.MIN_CHAR) it should loop back around to the end.

5. Your choice!

Here, you'll implement an encryption scheme that sounds most interesting to you! There are no
constraints on this option, other than your encryption scheme must be one-to-one (every output
sequence must have a single unique input sequence and vice versa).

If you would like to implement a different Cipher, you will need specify what the Cipher will be as part of your
proposal. Your proposed requirements should be similar in scope and complexity to the requirements for the
suggested extensions. Post in this Ed thread [TODO: Update Link] to propose a different Cipher.

Try your new Cipher!
Go ahead and create a MultiCipher that uses some combination of the base assignment and your
extension. Note that when using one of the recommended extensions, it should be much, much more
difficult to try and decrypt your message! This is because all of the recommended ciphers involve
some element of shuffling characters into nonsense inputs / shifting by non-constant amounts. An
adversary would have a much harder time trying to crack this combination than your previous
MultiCiphers!

Testing
You are welcome to use the provided Client.java to test and debug your cipher implementations.
To do so, make sure to change the CHOSEN_CIPHER constant to the cipher you're testing before hitting
run. You are also encouraged to modify the constants in Cipher.java such that a smaller subset of
characters are used by your cipher. However, these constants must be reverted before marking and
your implementation should work regardless of what values are assigned to Cipher.MIN_VALUE and

Cipher.MAX_VALUE .

� Implementation Guidelines
As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements and hints:

Each type of Cipher should be represented by a class that extends the Cipher class (or a
subclass of Cipher). You should not modify Cipher . You should utilize inheritance to capture
common behavior among similar cipher types and eliminate as much redundancy between
classes as possible.

You should make all of your fields private and you should reduce the number of fields only to
those that are necessary for solving the problem.

Each of your fields should be initialized inside of your constructor(s).

You should comment your code following the Commenting Guide. You should write comments
with basic info (a header comment at the top of your file), a class comment for every class, and
a comment for every method other than main.

Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.

Ciphers

Ciphers.zip

Download starter code:

Write Implementations to Substitution.java , CaesarShift.java , CaesarKey.java , and
MultiCipher.java here! Remember that implementations for all of these are required for this
assignment.

Creative Extension

CipherCreative.zip

Download starter code:

Write an implementation for one of: Concealment.java , Vigenere.java , Transposition.java ,
CaesarRandom.java , or an additional cipher of your choosing here! Remember that only one
implementation is required for the extension of this assignment.

Reflection

Question 1

No response

Question 2

No response

Question 3

No response

Question 4

No response

Question 5

No response

Question 6

The following questions will ask that you practice metacognition to reflect on the topics covered on
this assignment and your experience completing it. For each question, focus on your plan and/or
process for working through the assignment along with the CS concepts. Think about things like how
you organized your working time, what sorts of things tended to go wrong, and how you dealt with
those errors or mistakes.

Please answer all questions.

Describe the inheritance hierarchy you chose to create. Which classes extended which other classes?
Why did you make those choices?

Describe how you went about testing your implementation. What specific situations and/or test cases
did you consider? Why were those cases important?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be

No response

Question 7

No response

Question 8

No response

close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

I attest that the work I am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If I have any concerns about this
policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

