
Programming Assignment 4: Spam Classifier

Background

The rise of "Machine Learning" and "Artificial Intelligence" has been hard to ignore in the past decade. 
While the more well-known applications include ChatGPT and Dall-E, there are a number of other 
uses for these powerful algorithms. These include assisting biologists in the drug discovery process, 
helping medical professionals diagnose diseases early, and predicting erratic wildfire movements to 
save lives.

In essence, "Machine Learning" and "Artificial Intelligence" are subsets of Computer Science 
concerned with using trends from previous examples to predict things about unseen data. Yet, it is 
important to remember that these algorithms aren't magic with limitless potential – they simply 
guess the most likely outcome based on many, many previous examples. This means that any 
algorithm's predictions are only as good as the data it was built upon, which can easily be biased in 
some way. Thus, it is important to recognize and advocate for appropriate uses of these models, 
regardless of how miraculous they seem.

Terminology
There are several machine learning terms used throughout the specification for this assignment that 
we would like to formally define before you begin. It might even be worth having this slide open in 
another tab while reading the assignment to make sure you fully understand the terms being given to 
you.

Model: The actual program that makes probabilistic classifications on provided inputs.

Training: Models are "trained" on previously gathered datasets to make future predictions.

Label: How data is classified after being run through the model. In our tree, leaf nodes will 
house classification labels.

Split: Some way of differentiating one classification from another for different inputs. In our 
tree, intermediary nodes will house splits. Each split defines a feature and a threshold to 
determine which direction to travel:

Feature: Important aspects/characteristics of our dataset that we use in classification that 
corresponds to a numeric value. Typically, the hardest part of a machine learning 
algorithm is determining how to take input data and "featurize" it into something a 
computer can understand

Ex: turning a sentence or image into a series of numbers.

Threshold: The numeric value we're comparing a feature against at any split within our 



classifier. In our tree, if the current input is less than the threshold we should go left. If it's 
greater than or equal to, we should go right.



Specification

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Implement a well-designed Java class that extends an abstract class to meet a given 
specification.

Understand and correctly use various Machine Learning terminology

Define data structures to represent compound and complex data

Write a functionally correct Java class to represent a binary tree.

Write classes that are readable and maintainable, and that conform to provided guidelines for 
style, implementation, and performance.

Produce clear and effective documentation to improve comprehension and maintainability of 
programs, methods, and classes.

Assignment

This assignment involves a lot of Machine Learning (ML) terminology that is further defined in the Background 
slide. For clarity, these terms are underlined within this specification

Your goal for this assignment is to implement a classification tree, a simplistic machine learning 
model that given some input data will predict some label for it. Below is a visual example of what a 
classification tree might look like for some weather data. It also includes relevant labels for each of 
the vocab terms defined on the last slide.
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As seen above, in our classification tree the leaf nodes represent our predictive labels (Cloudy, 
Sunny, Windy, or Rainy) while the intermediary nodes represent a split on some feature of our 
data (windSpeed, temperature, or humidity). To reach a classification for some input, you start at the 
root of the tree and determine whether the corresponding feature falls to the left or right of the 
current node's threshold (determined by < or >=) and travel in the corresponding direction. Repeating 
this process will eventually lead you to a classification for your input. 

Below we'll trace through a sample input with our example weather model.

We'll begin at the root node with the following input:

       windSpeed, temperature, humidity
input:    10.214,      72.210,  0.41234

1. Since the windSpeed feature of the input is < the threshold (12.648) we'll travel left to the 
temperature node



2. Since the temperature feature of the input is >= the threshold (65.921) we'll travel right to the 
Sunny node

3. We have reached a leaf node and therefore can predict that input corresponds to a sunny day 
(the resulting label)



Another example of how a classification tree might be used is for spam email classification. Below is 
an alternative example of what a potential classification tree might look like in this case.

Similar to the above, you'll notice that the leaf nodes of this tree represent labels ("Spam" or "Ham" – 
a funny way of writing not spam) while the intermediary values represent a split on some feature of 
our data (wordPercent). Notice that the features in this example are slightly different from the 
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weather one above. Specifically, wordPercent is the only feature within this model; however, we also 
need to track the specific word we're comparing the percentage of. This is accomplished by 
appending the word preceded by some arbitrary "splitter" character (in this case '~') that separates the 
two. 

To solidify this idea, we'll trace through an input much like the weather example above.

We'll begin at the root node with the following input:

        content
input:  hello, i am here at your office but the door is locked. are you there?

1. Since 'here' consists of 6.67% of the input email, which is < the threshold (10.00%) we'll travel 
left to the wordPercent~dolphin node

2. Since 'dolphin' consists of 0.00% of the input email, which is < the threshold (3.75%) we'll travel 
left to the wordPercent~you



3. Since 'you' consists of 6.67% of the input email, which is >= the threshold (5.814%) we'll travel 
right to the Ham node



4. We have reached a leaf node and therefore can predict that input corresponds to a Ham email 
(the resulting label)
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This is what you'll be implementing in this assignment! Specifically, you'll be creating a classification 
tree that's able to predict given some email whether it's "Spam" or "Ham"! 

System Structure

Classifiable.java

Any data point we want to classify via our model must implement this interface. It defines three 
methods:

public double get(String feature);

Returns the corresponding value for the given feature. 

Although there are classification trees where it would make sense to return something 
else (imagine a color feature within a real estate dataset), since our implementation is 
only dealing with thresholds this must return a double.

public List<String> getFeatures();
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Returns a list of all features for a given dataset. This is useful in determining whether or 
not this type of data point can be classified by a specific Classifier .

public Split partition(Classifiable other);

Returns a partition ( Split ) between this data point and other . 

How this is computed is up to the implementer (and is a large part of the complexity of 
our model).

Note that there is no difference between calling one.partition(two)  and 
two.partition(one) . Both will return Splits  with the same feature and threshold.

A simple example of all the above implementations can be seen in the provided Email  
class.

Classifier.java

The class you're required to implement must extend the Classifier  abstract class provided in the 
coding workspace. Below is a description of these methods and hints for useful methods within other 
classes.

This is an abstract class that any model implementation must extend to prove it is capable of 
classifying some Classifiable data (see starter code) input. Below are the three abstract methods of 
Classifier :

public abstract boolean canClassify(Classifiable input);

Given a piece of classifiable data, returns whether or not this tree is capable of classifying it.

You can imagine that it wouldn't make much sense to try and run an email input 
through our weather classifier above, which is why this method is useful! A tree is 
capable of classifying an input if all features within the tree (see Split.getFeature ) 
are contained within the input's valid features (see Classifiable.getFeatures ).

public abstract String classify(Classifiable input);

Given a piece of classifiable data, return the appropriate label that this classifier predicts. 

This method should model the steps taken in our weather example above: at every 
split point, evaluate (see Split.evaluate ) our input data and determine if it's less 
than our threshold. If so, continue left; otherwise, continue right. Repeat this process 
until a leaf node is reached.

If the input is unable to be classified by this classifier, this method should throw an 
IllegalArgumentException .
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public abstract void save(PrintStream ps);

Saves this current classifier to the given PrintStream

For our classification tree, this format should be pre-order. Every intermediary 
node will print two lines of data, one for feature preceded by "Feature:" and one for 
threshold preceded by "Threshold:" (see Split.toString ). For leaf nodes, you should 
only print the label. Examples of the format can be seen below and through the trees  
directory in the start code.

NOTE: This class also implements a calculateAccuracy  method that returns the model's accuracy on all 
labels in a provided testing dataset. This is useful to see how well our model works, and what labels it is 
struggling with classifying correctly.

Split.java

To help implement your node class, we have provided the Split  class: a wrapper class that you 
should use to store both a feature and threshold for any intermediary (non-leaf) nodes within your 
tree. Below are some methods that will likely be useful in your implementation:

public Split(String feature, double threshold)

Constructs a new Split  with the given feature and threshold

public String getFeature()

Returns the feature name without any specific component tied to it. 

In the case of our email example, it would return "wordPercentage" without the 
specific word tied to it (instead of "wordPercentage~dolphin")

public boolean evaluate(Classifiable value)

Evaluates the provided value assifiable  object on this split, returning true if it falls below 
(<) this split, and false if it falls above. 

In other words, given some Classifiable data, return whether you should travel left 
or right from this point.

public String toString()

Returns a String representation of the given Split in the following format:

Feature: <feature>
Threshold: <threshold>



Required Operations
For this assignment, you're required to implement ClassificationTree.java  a class that extends 
Classifier  but with the following additional constructors:

public ClassificationTree(Scanner sc)

Load the classification tree from a file connected to the given Scanner. You may assume that the 
sc  is non-null and that the format of the input file matches that of the save  method described 
within Classifier . 

Importantly, in this method, you should only read data from the file using nextLine  and 
convert it to the appropriate format using Double.parseDouble .

This method should throw an IllegalStateException  if the tree is empty after reading it in 
from this file

public ClassificationTree(List<Classifiable> data, List<String> results)

Create a classification tree from the input data and corresponding labels. 

Note that you are building the tree up from scratch in this constructor. 

The lists should be traversed in parallel, where the label corresponding to data.get(i)  can be 
found at results.get(i) . The general construction process should be accomplished via the 
algorithm described below:

Traverse through the current classification tree until you reach a leaf node.

If the node's label matches the current label, do nothing (our model is accurate up to 
this point).

If the label is incorrect, create a split between the data used to create the original 
leaf node* and our current input.

HINT: Use Classifiable.partition  to generate this split

Insert a new intermediary node that uses this split to correctly classify the 
current data and the old data.

This method should throw an IllegalArgumentException  if the provided lists aren't the same 
size or the lists are empty.

* This algorithm requires you to keep track of both the label and the Classifiable datapoint first assigned to 
this label within every leaf node created in this constructor, as without the previous Classifiable datapoint we 
would be unable to create a new split! Ideally we'd like to keep track of all input data that falls under a specific 
leaf node such that when creating a new split, we can make sure it's valid for our entire training dataset. For 
simplicity, only worry about the first datapoint used to create a label node.

The algorithm above is further shown in the following diagrams:
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We start with an empty tree and process the first input:

At the very beginning of our constructor, we should fill our empty tree with a single node 
containing the appropriate label of the first data point.

Note that this node also stores a reference to the data used to create it. This will be useful in the 
next step. Once we've processed the first data point, we move on to the second. We traverse 
through the existing tree until reaching a leaf node (which just so happens to be the only node in 
our tree):

Then we see if the resulting label is correct. Our expected result is "Spam", but the one predicted 
by our model is "Ham". This is incorrect, so we need to create a new split via the 



Classifiable.partition()  method:

This will return a new Split  which we can then store within a new intermediary node that will 
allow us to correctly distinguish one  vs. two . All that's left to do is organize the label nodes 
appropriately as seen below:

Furthermore, we can imagine undertaking this process with a third datapoint as depicted below

We'll repeat the algorithm as described above. First, traverse through the existing tree until we 
reach a leaf node:



Since this datapoint's here  percentage is < 0.1, we travel left:

Now we arrive at a leaf node and notice that the label is correct (our model predicts "Spam" as 
expected by our input). This means we need to make no further changes and can leave our tree as 
it is!

Repeating this process for all data points in our provided lists will result in a working classification 
tree trained on existing input data!

ClassificationNode

As part of writing your ClassificationTree  class, you should also have a private static inner 
class called ClassificationNode  to represent the nodes of the tree. The contents of this class are up 
to you, but must meet the following requirements:

You must have a single ClassificationNode  class that can represent both splits and labels — 
you should not create separate classes for the different types of nodes.

Don't worry about efficient subclassing/superclassing even though some fields 
won't be used in all cases. This is entirely ok for this assignment.
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The fields of the ClassificationNode  class must be public .

All data fields should be declared final  as well. This does not include fields referencing 
the children of a node.

The ClassificationNode  class must not contain any constructors or methods that are not 
used by the ClassificationTree  class.

File Format

The files that are both created by the save  method and read by the Scanner  constructor will follow 
the same format. These files will contain a pair of lines to represent intermediary nodes and a single 
line to represent leaf nodes in the ClassificationTree . The first line in each intermediary node pair 
will start with "Feature: " followed by the feature and the second line will start with "Threshold: " 
followed by the threshold. Lines representing the leaf nodes will simply contain the label.

For example, consider the following sample file ( simple.txt ):

Feature: wordPercent~here
Threshold: 0.125
Feature: wordPercent~are
Threshold: 0.16666666666666666
Feature: wordPercent~for
Threshold: 0.16666666666666666
Feature: wordPercent~our
Threshold: 0.0625
ham
spam
ham
ham
ham

Notice that the nodes appear in a pre-order traversal of the resulting tree:



Try out your Classifier!
Once those methods are implemented, you'll have a working classifier! Try it out using Client.java  
and see how well it does (what is its accuracy on our test data). Also, try saving your tree to a file and 
see what it looks like. Is it splitting on features you'd expect? Why or why not? (Note that this is a big 
area of current CS research called "explainable AI" - how can we interpret the results from these 
massive probability models that are often difficult for humans to understand).

Testing
There are no formal testing requirements for this assignment. Though, we'd encourage you to get 
your hands dirty and see how well your model performs on the provided dataset / investigate the 
output files to see if you can make sense of what the inner structure is!

� Implementation Guidelines



As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide. 
In particular, pay attention to these requirements:

x = change(x) : 

Similar to with linked lists, do not "morph" a node by directly modifying fields (especially 
when replacing an intermediary node with a leaf node or vice versa). Existing nodes can 
be rearranged in the tree, but adding a new value should always be done by creating and 
inserting a new node, not by modifying an existing one. 

An important concept introduced in lecture was called x = change(x) . This idea is 
related to the proper design of recursive methods that manipulate the structure of a 
binary tree. You should follow this pattern where necessary when modifying your 
trees. 

Avoid redundancy: 

If you find that multiple methods in your class do similar things, you should create helper 
method(s) to capture the common code. As long as all extra methods you create are 
private (so outside code cannot call them), you can have additional methods in your class 
beyond those specified here. 

Look out for including additional base or recursive cases when writing recursive code. 
While multiple calls may be necessary, you should avoid having more cases than you 
need. Try to see if there are any redundant checks that can be combined!

Data Fields: 

Properly encapsulate your objects by making data fields in your ClassificationTree  
class private. (Fields in your ClassificationNode  class should be public following the 
pattern from class.) 

Avoid unnecessary fields; use fields to store important data of your objects but not to 
store temporary values only used in one place. 

Fields should always be initialized inside a constructor or method, never at declaration. 

Commenting 

Each method should have a comment including all necessary information as described in 
the Commenting Guide. Comments should be written in your own words (i.e. not copied 
and pasted from this spec) and should not include implementation details



Spec Quiz

Question 1 Submitted Jul 22nd 2024 at 1:59:15 pm
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Question 2 Submitted Jul 22nd 2024 at 1:59:18 pm
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Question 3 Submitted Jul 22nd 2024 at 1:19:22 pm
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Spec Quiz
The following quiz is intended to help make sure you fully understand the assignment specification. 
We highly encourage you understand the answers to each of the following questions prior to writing 
code.

NOTE: Unfortunately, Ed doesn't allow us to reveal quiz answers within an assignment so we've included 
dropdowns with all the correct answers. However, you should still be attempting each question before 
checking your answer to verify you fully understand what the spec is asking you to do.

We will not grade any portion of this quiz for completion or correctness. It is simply a resource for 
you to use in working this assignment should you choose to.

Vocabulary: What word is used to describe any algorithm / process in which computers make 
probabilistic classifications on inputs.

This defines a model!

Vocabulary: What is the output of any machine learning classification model?

This defines a label!

Vocabulary: A split within our dataset stores which of the following

Splits store both a feature and a threshold! This can be seen within the Split.java  class



Question 4 Submitted Jul 22nd 2024 at 1:59:27 pm
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True

False

Question 5

Expand

True

False

Question 6

Old Input Data

Feature

Label

Threshold

Process: True or false, We should travel left if a feature value for our input data is >= the threshold at 
our current split.

False, we should travel right if the feature value is >= the threshold

Process: When "training" a model, we need access to data and known labels for the input data.

True, "training" a model involves building it from scratch. In order for our newly created model to 
be accurate, we need to know the correct labels for each datapoint we're learning from.

Process: Our classification model can only handle datapoints with one feature (e.g wordPercent  for 
emails)
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True

False

Question 7 Submitted Jul 22nd 2024 at 3:47:38 pm
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False, there's no limit on how many features our model can handle! The example we work with 
will only have one, but it's not a requirement.

Files: Which files should you thoroughly read the documentation for in this assignment?

Classifiable , Classifier , and Split  are the only files you need to understand in-depth for 
this assignment. You're welcome to explore the others but they will not be relevant for the 
implementation you're writing:

Client  provides command-line interaction for a classifier.

CsvReader  and DataLoader  provide some useful methods the Client  uses to load data 
from provided files into a format useable by a Classifier  / ClassificationTree

Email  is just an example of a Classifiable  - you should only need to read the 
Classifiable  documentation to know the functionality of its methods

Classifiable

Classifier

Client

CsvReader

DataLoader

Email



Split



Development Guide

Question 1 Submitted Jul 23rd 2024 at 8:15:25 pm
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Development Guide
Below is a development guide through this assignment, walking you through each process step-by-
step and pointing you to relevant methods you should be using in your solution. We recommend 
following this and making sure that you stop at each of the warning boxes to make sure your solution 
works correctly before continuing.

We will not grade any portion of this quiz for completion or correctness. It is simply a resource for 
you to use in working this assignment should you choose to.

Design your Node

First, design your node class that represents both the intermediary and leaf nodes within your 
classification tree. Think about the information these nodes will be required to store based on the 
specification. Remember that in our classification tree, intermediary nodes represent splits on the 
dataset and leaf nodes represent classification labels. 

Which of the following will be necessary to individually store within your node class?

Our nodes must store: labels ( String ), splits ( Split ), and old input data ( Classifiable ), as well 
as left / right pointers since we're making a tree ( ClassificationNode )!

Splits are necessary for our intermediary nodes. Features and thresholds will be stored within the 
Split class, so no need to store those individually. Labels are necessary for our leaf nodes when 
classifying. Old input data is necessary for our leaf nodes when working on the last part of the 
assignment (the training constructor).

You should store all of these fields in a single node class (don't worry about efficient 
subclassing / superclassing) even though they won't be used in all cases. This is entirely 
ok for this assignment.

Labels

Splits



Question 2
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Features

Thresholds

Old Input Data

Models

Scanner Constructor

Once you've settled on a node class you're happy with, we recommend working on the Scanner 
constructor which loads a previously saved file into the tree. Remember that this file is stored in pre-
order format, where the feature and threshold for intermediary nodes are stored on two lines within 
the file:

Feature: wordPercent~here
Threshold: 0.125

And labels are present without any additional formatting:

ham

You may assume that "Feature" and "Threshold" will never be labels within the input file. Remember 
that you should only ever call .nextLine()  on the provided Scanner.

The tests for your Scanner constructor implementation are tied to a working save implementation. This means 
that once you feel comfortable with your solution you should move onto the next part, and test for both 
implementations at the same time.

What method should you use to parse the numerical value from a "Threshold:"  line?

You should use Double.parseDouble()  to turn the String "0.125" into a double 0.125

Integer.parseInt()

Double.parseDouble()



Question 3
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Question 4

String.valueOf()

save()

Once you've implemented the Scanner constructor, do the opposite! Namely, given an already 
constructed classification tree, save it to the provided PrintStream via a pre-order traversal with the 
format described above.

At this point, test your Scanner constructor and save implementations. You should not move forward in this 
assignment until these two methods are passing the provided tests.

Looking at the documentation for the Split  class, what method will be most useful in implementing 
the save()  method?

toString()  seems to return exactly what we're looking for in terms of printing out our 
intermediary nodes!

getFeature()

getThreshold()

evalute()

toString()

midpoint()

canClassify()

This method should traverse through all nodes within the current tree and check if any node contains 
a feature that doesn't apply to the given Classifiable object. This can be accomplished by checking if 
the current split's feature is present within the set of all features that pertain to the data. If a single 
node within the tree contains a feature not present in the data, this method should return false.
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Question 5
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At this point, test your current implementation. You should not move forward in this assignment until the 
canClassify method is passing.

Looking at the documentation for the Classifiable  class, what method will be most useful in 
checking if a split's feature is compatible with a datapoint?

getFeatures()  will return a set of all features compatible with a datapoint! From there we can 
check to see if the feature for this split is within that set. You can then call Split.getFeature()  
and see if it's present in the set to know if things are compatible.

get()

getFeatures()

partition()

classify()

Now we can start classifying! This method should traverse through the tree by evaluating splits on the 
input data to see whether or not the input falls below the current threshold. If so, the traversal should 
continue into the left subtree, otherwise the right. Once a leaf node is reached the corresponding 
label should be returned.

At this point, test your current implementation. You should not move forward in this assignment until the 
classify method is passing

What method within the Split  class will help determine if a given Classifiable  datapoint is above 
or below the current threshold?

evalute()  takes in a Classifiable  object and returns true  if it falls below (<) the split and 
false  if it falls at or above (>=) the split. This means if this method returns true , we should 
travel left and if it returns false , we should travel right.

getFeatures()
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evaluate()

toString()

Two List Constructor

Here is where we actually "train" our model, and will likely be the most difficult part of your 
implementation. Your implementation should follow the following algorithmic approach (copied from 
the spec - diagrams depicted there): 

Traverse through the current classification tree until you reach a leaf node.

If the node's label matches the current label, do nothing (our model is accurate up to this 
point).

If the label is incorrect, create a split between the data used to create the original leaf 
node* and our current input.

Insert a new intermediary node that uses this split to correctly classify the 
current data and the old data.

Remember to use x=change(x)  when implementing this method and creating new splits within the 
dataset.

At this point, test your current implementation. You should not move forward in this assignment until the two 
list constructor is passing

Looking at the documentation for the Classifiable  class, what method will return the best Split  
between the current and provided instances?

partition()  does exactly this - it will return the best Split  for the current and provided 
Classifiable  instances

Note that there is no difference in calling one.partition(two)  and two.partition(one) . Both 
will return Splits  with the same feature and threshold.

get()

getFeatures()
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True

False

partition()

Exceptions

The last step of this assignment is to go through and implement the required exceptions if you 
haven't already. What's expected is listed below:

Two list constructor:

IllegalArgumentException  if the provided lists aren't the same size or the lists are 
empty

Scanner constructor:

IllegalStateException  if the tree is empty after being loaded from the file 

Classify method:

IllegalArgumentException  if the provided input can't be classified

At this point, test your current implementation. You should not move forward in this assignment until the 
exception tests are passing

True or false, do you have to implement these exceptions to pass the test cases?

Can't insert text segments in quizzes on Ed - had to make this a question. The answer is true!



Reflection

Question 1

Question 2

Question 3

The following questions will ask that you practice metacognition to reflect on the topics covered on 
this assignment and your experience completing it. For each question, focus on your plan and/or 
process for working through the assignment along with the CS concepts. Think about things like how 
you organized your working time, what sorts of things tended to go wrong, and how you dealt with 
those errors or mistakes.

Please answer all questions.

In this reflection, we'll look more closely at large-language models (LLMs) and explore whether or not 
they're capable of understanding language. ChatGPT is the most well-known example of an LLM. 
Navigate to chatgpt.com and interact with the model by carrying out some form of conversation with 
it.

Without the prior knowledge that these responses were machine generated, would you believe them 
to come from a human being? Why or why not? 

NOTE: This is effectively a Turing Test; a famous method of determining whether or not a machine is capable of 
intelligent behavior.

Now, remember that ChatGPT is a machine learning model, meaning it has learned from previously 
seen examples. Try asking it for the answer to a question it's unlikely to have seen before / 
memorized (such as a math operation on specific large random numbers). Does it produce the correct 
response?

If you instead used this interaction to judge whether or not you're interacting with a human, would it 
change your mind? Why or why not?

The next 3 questions will require you reflect on "Section 4: The octopus test" from the paper 
"Climbing towards NLU: On Meaning, Form, and Understanding in the Age of Data". The authors, 
Bender and Koller attempt a thought experiment to further their argument as to why Machine 
Learning models (such as ChatGPT) aren't capable of learning language from form (example inputs) 
alone.
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The appropriate section is quoted in the dropdown below for ease of reference, and you're 
welcome to read the rest of the paper linked above if it interests you.

NOTE: This will likely be a challenging read, do your best and feel free to ask questions on the Ed board if you're 
confused!

In order to illustrate the challenges in attempting to learn meaning from form alone, 
we propose a concrete scenario. Say that A and B, both fluent speakers of English, 
are independently stranded on two uninhabited islands. They soon discover that 
previous visitors to these islands have left behind telegraphs and that they can 
communicate with each other via an underwater cable. A and B start happily typing 
messages to each other. 

Meanwhile, O, a hyper-intelligent deep-sea octopus who is unable to visit or observe 
the two islands, discovers a way to tap into the underwater cable and listen in on A 
and B’s conversations. O knows nothing about English initially, but is very good at 
detecting statistical patterns. Over time, O learns to predict with great accuracy how 
B will respond to each of A’s utterances. O also observes that certain words tend to 
occur in similar contexts, and perhaps learns to generalize across lexical patterns by 
hypothesizing that they can be used somewhat interchangeably. Nonetheless, O has 
never observed these objects, and thus would not be able to pick out the referent of 
a word when presented with a set of (physical) alternatives. 

At some point, O starts feeling lonely. He cuts the underwater cable and inserts 
himself into the conversation, by pretending to be B and replying to A’s messages. 
Can O successfully pose as B without making A suspicious? This constitutes a weak 
form of the Turing test (weak because A has no reason to suspect she is talking to a 
nonhuman); the interesting question is whether O fails it because he has not learned 
the meaning relation, having seen only the form of A and B’s utterances. 

The extent to which O can fool A depends on the task — that is, on what A is trying 
to talk about. A and B have spent a lot of time exchanging trivial notes about their 
daily lives to make the long island evenings more enjoyable. It seems possible that O 
would be able to produce new sentences of the kind B used to produce; essentially 
acting as a chatbot. This is because the utterances in such conversations have a 
primarily social function, and do not need to be grounded in the particulars of the 
interlocutors’ actual physical situation nor anything else specific about the real 
world. It is sufficient to produce text that is internally coherent.

Now say that A has invented a new device, say a coconut catapult. She excitedly 
sends detailed instructions on building a coconut catapult to B, and asks about B’s 
experiences and suggestions for improvements. Even if O had a way of constructing 
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the catapult underwater, he does not know what words such as rope and coconut 
refer to, and thus can’t physically reproduce the experiment. He can only resort to 
earlier observations about how B responded to similarly worded utterances. Perhaps 
O can recognize utterances about mangos and nails as “similarly worded” because 
those words appeared in similar contexts as coconut and rope. So O decides to 
simply say “Cool idea, great job!”, because B said that a lot when A talked about 
ropes and nails. It is absolutely conceivable that A accepts this reply as meaningful — 
but only because A does all the work in attributing meaning to O’s response. It is not 
because O understood the meaning of A’s instructions or even his own reply.

Finally, A faces an emergency. She is suddenly pursued by an angry bear. She grabs a 
couple of sticks and frantically asks B to come up with a way to construct a weapon 
to defend herself. Of course, O has no idea what A “means”. Solving a task like this 
requires the ability to map accurately between words and real-world entities (as well 
as reasoning and creative thinking). It is at this point that O would fail the Turing test, 
if A hadn’t been eaten by the bear before noticing the deception.

Having only form available as training data, O did not learn meaning. The language 
exchanged by A and B is a projection of their communicative intents through the 
meaning relation into linguistic forms. Without access to a means of hypothesizing 
and testing the underlying communicative intents, reconstructing them from the 
forms alone is hopeless, and O’s language use will eventually diverge from the 
language use of an agent who can ground their language in coherent communicative 
intents.

The thought experiment also illustrates our point from §3 about listeners’ active role 
in communication. When O sent signals to A pretending to be B, he exploited 
statistical regularities in the form, i.e. the distribution of linguistic forms he observed. 
Whatever O learned is a reflection of A and B’s communicative intents and the 
meaning relation. But reproducing this distribution is not sufficient for meaningful 
communication. O only fooled A into believing he was B because A was such an 
active listener: Because agents who produce English sentences usually have 
communicative intents, she assumes that O does too, and thus she builds the 
conventional meaning English associates with O’s utterances. Because she assumes 
that O is B, she uses that conventional meaning together with her other guesses 
about B’s state of mind and goals to attribute communicative intent. It is not that O’s 
utterances make sense, but rather, that A can make sense of them.

How does the experiment you performed talking with ChatGPT at the beginning of this reflection 
relate to the thought experiment defined above? What corresponds to A, B, and O?
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The authors' claim revolves around the idea that understanding the meaning of language relies on 
"communicative intents". Do you agree that intent is necessary for communication? Why or why not?

Contrast the perspective above with the word vector example from lecture. Those numerical 
representations seemingly gained some understanding of how words are related, as evidenced by our 
comparison examples ("dog is to puppy as cat is to kitten").

With both these examples in mind, do you believe that ChatGPT / other machine learning models are 
capable of actually understanding language? Why or why not?

Describe how you went about testing your implementation. What specific situations and/or test cases 
did you consider? Why were those cases important?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be 
close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear, 
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?



(Note that we may not be able to respond to questions here, so please post on the message board if 
you would like a response!)
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� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your 
work.

I attest that the work I am about to submit is my own and was completed according to the course 
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any 
outside resources, they are allowed and have been properly cited. If I have any concerns about this 
policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)


