
CSE 123 Summer 2024LEC 07: Runtime Analysis

CSE 123
L E C 0 7

Questions during Class?

Raise hand or send here

sli.do #cse123

Runtime Analysis

Talk to your neighbors:

What was the last book you read?

BEFORE WE START

Music: 123 24su Lecture Tunes ☀️

Instructor:

TAs:

Joe Spaniac
Andras
Daniel

Eric
Nicole

Sahej
Trien

Zach

https://open.spotify.com/playlist/2DPqntOkFwn1o2QZqpP99W

CSE 123 Summer 2024LEC 07: Runtime Analysis

Lecture Outline

• Announcements

• Finishing up LinkedIntList

• Runtime Analysis

- Complexity Classes

- Big-Oh Notation

• Analyzing List Implementations

CSE 123 Summer 2024LEC 07: Runtime Analysis

Announcements

• Quiz 1 grades out!
- Please check your grades before the next quiz, practice metacognition

• Quiz 2 in section on Tuesday, 7/16
- Topics: Abstract classes, ArrayIntList, LinkedIntList

- Same policies as last time: One sheet of 8.5” x 11” notes (double-sided,
printed or handwritten), 50mins, etc.

• Programming assignment 2 released last night, due in 2 weeks

• Resubmission Period 2 closes tonight, 7/12 at 11:59pm

• Resubmission Period 3 opens tonight, due next Friday 7/19 at
11:59pm

CSE 123 Summer 2024LEC 07: Runtime Analysis

Lecture Outline

• Announcements

• Finishing up LinkedIntList

• Runtime Analysis

- Complexity Classes

- Big-Oh Notation

• Analyzing List Implementations

CSE 123 Summer 2024LEC 07: Runtime Analysis

Lecture Outline

• Announcements

• Finishing up LinkedIntList

• Runtime Analysis

- Complexity Classes

- Big-Oh Notation

• Analyzing List Implementations

CSE 123 Summer 2024LEC 07: Runtime Analysis

Runtime Analysis

• What’s the “best” way to write code?
- Depends on how you define best: Code quality, memory usage, speed, etc.

• Runtime = most popular way of analyzing solutions
- Slow code = bad for business

• How do we figure out how long execution takes?
- Stopwatch = human error

- Computers = computer error (artifacts, operating systems, language)

- Need a way to formalize abstractly…

CSE 123 Summer 2024LEC 07: Runtime Analysis

Runtime Analysis

• We’ll count simple operations as 1 unit
- variable initialize / update int x = 0;

- array accessing arr[0] = 10;

- conditional checks if (x < 10) {

• Goal: determine how the number of operations scales w/ input size
- Don’t care about the difference between 2 and 4

- Find the appropriate complexity class

• Result: evaluation tactic independent of OS, language, compiler, etc.
- Simple operation = constant regardless of if it is truly 1

CSE 123 Summer 2024LEC 07: Runtime Analysis

Complexity Classes
• Input will always be an array arr of length n

• Constant (1)
- # Ops doesn’t relate to n return arr[0];

• Linear (n)
- # Ops proportional to n for (int i = 0; i < arr.length; i++)

• Quadradic (n^2)
- # Ops proportional to n^2 for (int j = 0; j < arr.length; j++)

for (int j = 0; j < arr.length; j++)

• Lets say # Ops = n^2 + 100000n
- If n was really, really, really big, which term matters more?

- Only care about the dominating term for complexity!

CSE 123 Summer 2024LEC 07: Runtime Analysis

Complexity Classes

What’s the complexity class of the following?

public static void mystery(int[] arr) {
if (arr.length == 0) {

throw new IllegalArgumentException();
}
return arr[arr.length – 1];

}

1

1

2

Constant Complexity (1)

CSE 123 Summer 2024LEC 07: Runtime Analysis

Complexity Classes

What’s the complexity class of the following?

public static int mystery(int[] arr) {
int sum = 0;
for (int i = 0; i < arr.length; i++) {

sum += arr[i];
}
return sum;

}

Linear Complexity (n)

1

1

3n + 2 33n

CSE 123 Summer 2024LEC 07: Runtime Analysis

Complexity Classes

What’s the complexity class of the following?

public static int mystery(int[] arr) {
for (int i = 0; i < arr.length; i++) {

for (int j = 0; j < arr.length; j++) {
System.out.print(arr[i] + “ “);

}
System.out.println();

}
}

2

1

2n
n(2n + 1)

= 2n^2 + n

Quadratic Complexity (n^2)

CSE 123 Summer 2024LEC 07: Runtime Analysis

Big-Oh Notation

• Programmers… are pessimists (or maybe realists)
- Case in point: dominating term

• In the real world, best-case complexity isn’t super useful
- Want to make sure solutions work well in the worst possible situations

• We use Big-Oh notation to demonstrate worst-case complexity!

public static int indexOf(int[] arr, int x) {
for (int i = 0; i < arr.length; i++) {

if (arr[i] == x) return i;
}
return -1;

}

Worst-case
linear

O(n)

CSE 123 Summer 2024LEC 07: Runtime Analysis

Lecture Outline

• Announcements

• Finishing up LinkedIntList

• Runtime Analysis

- Complexity Classes

- Big-Oh Notation

• Analyzing List Implementations

