
CSE 123 Summer 2024LEC 05: Linked Nodes

CSE 123
L E C 0 5

Questions during Class?

Raise hand or send here

sli.do #cse123

Linked Nodes

Talk to your neighbors:

Did you see / light any fireworks last
night? If not, what did you do with

your break?

BEFORE WE START

Music: 123 24su Lecture Tunes ☀️

Instructor:

TAs:

Joe Spaniac
Andras
Daniel

Eric
Nicole

Sahej
Trien

Zach

https://open.spotify.com/playlist/2DPqntOkFwn1o2QZqpP99W

CSE 123 Summer 2024LEC 05: Linked Nodes

Lecture Outline

• Announcements

• Contiguous vs. Non-contiguous memory

• Reference Semantics

- Trains cont.

• Linked Nodes

- ListNode class

- Iterating over ListNodes

CSE 123 Summer 2024LEC 05: Linked Nodes

Announcements

• Resubmission Period 1 due tonight (7/5) at 11:59pm
- Submit the assignment again, mark your new attempt final, fill out the linked

google form

• Creative Project 2 is out, due Wednesday (7/10) at 11:59pm
- Generally regarded as a fun one!

• Resubmission Period 2 opening tonight, due next Friday (7/12)
- Assignments available: C1, P1

• Check-in 2 next Thursday (7/11)
- Taken in quiz section, should help in preparation for the quiz.

- Reminder: you only need to attend 2 of these for the grade, but they should
be beneficial regardless.

CSE 123 Summer 2024LEC 05: Linked Nodes

Lecture Outline

• Announcements

• Reference Semantics

- Trains cont.

• Contiguous vs. Non-contiguous memory

• Linked Nodes

- ListNode class

- Iterating over ListNodes

CSE 123 Summer 2024LEC 05: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[10];
int[] y = x;

y[0]++; // x[0] changed

x 10 y

CSE 123 Summer 2024LEC 05: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[10];
int[] y = x;

y[0]++; // x[0] changed

x 10 y 10

CSE 123 Summer 2024LEC 05: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[10];
int[] y = x;

y[0]++; // x[0] changed

x 10 y 11

CSE 123 Summer 2024LEC 05: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[10];
int[] y = x;

y[0]++; // x[0] changed

x y 0 0 0 0 0

CSE 123 Summer 2024LEC 05: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[10];
int[] y = x;

y[0]++; // x[0] changed

x y 0 0 0 0 0

CSE 123 Summer 2024LEC 05: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[10];
int[] y = x;

y[0]++; // x[0] changed

x y 1 0 0 0 0

CSE 123 Summer 2024LEC 05: Linked Nodes

Lecture Outline

• Announcements

• Reference Semantics

- Trains cont.

• Contiguous vs. Non-contiguous memory

• Linked Nodes

- ListNode class

- Iterating over ListNodes

CSE 123 Summer 2024LEC 05: Linked Nodes

Lecture Outline

• Announcements

• Reference Semantics

- Trains cont.

• Contiguous vs. Non-contiguous memory

• Linked Nodes

- ListNode class

- Iterating over ListNodes

CSE 123 Summer 2024LEC 05: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.

Memory

CSE 123 Summer 2024LEC 05: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- int[] arr = new int[10];

Memory

arr

CSE 123 Summer 2024LEC 05: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- int[] arr = new int[10];

Memory

arr

We call this “contiguous” memory

CSE 123 Summer 2024LEC 05: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- EngineCar engine = new EngineCar(“Empire Builder”, 10,

new SleeperCar(10));
Memory

engine

CSE 123 Summer 2024LEC 05: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- EngineCar engine = new EngineCar(“Empire Builder”, 10,

new SleeperCar(10));
Memory

engine

CSE 123 Summer 2024LEC 05: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- EngineCar engine = new EngineCar(“Empire Builder”, 10,

new SleeperCar(10));
Memory

engine

CSE 123 Summer 2024LEC 05: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- EngineCar engine = new EngineCar(“Empire Builder”, 10,

new SleeperCar(10));
Memory

engine

We call this “non-contiguous” memory

CSE 123 Summer 2024LEC 05: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.

• Contiguous memory = impossible to resize directly
- Surrounding stuff in memory (we can’t just overwrite)

- Best we can manage is get more space and copy

• Non-contiguous memory = easy to resize
- Just get some more memory and link it to the rest

• Is it possible to create a non-contiguous List implementation?
- Could make the resizing / shifting problems easier…

CSE 123 Summer 2024LEC 05: Linked Nodes

Lecture Outline

• Announcements

• Reference Semantics

- Trains cont.

• Contiguous vs. Non-contiguous memory

• Linked Nodes

- ListNode class

- Iterating over ListNodes

CSE 123 Summer 2024LEC 05: Linked Nodes

Linked Nodes

• We want to chain together ints “non-contiguously”
- A bunch of train cars where each is responsible for a single integer

• Accomplish this with nodes we link together
- Each node stores an int (data) and an reference to the next node (next)

data next

node

CSE 123 Summer 2024LEC 05: Linked Nodes

ListNode

• Java class representing a “node”

• Two fields to store discussed state:
- Fields are public?! We’ll come back to this

• Why can ListNode be a field in the ListNode class?

public class ListNode {
public int data;
public ListNode next;

}

CSE 123 Summer 2024LEC 05: Linked Nodes

Iterating over ListNodes

• General pattern iteration code will follow:

ListNode curr = front;
while (curr != null) {

// Do something

curr = curr.next;
}

