BEFORE WE START

Talk to your neighbors:

How prepared do you feel for the final? What do you need to study?

Music: <u>123 24su Lecture Tunes</u>

Instructor: Joe Spaniac

TAs: Andras Eric Sahej Zach Daniel Nicole Trien

LEC 14 CSE 123

Machine Learning

Questions during Class?

Raise hand or send here

sli.do #cse123

Lecture Outline

- Announcements/Reminders
- Machine Learning (ML)
 - Definition / MLE
 - Applications
- ML Pipeline
- Spam Classifier
 - Decision Trees
- Questions to Consider

Announcements

- C3 / R5 feedback released sometime after lecture today
- P3 due tonight (8/7) at 11:59pm
 - Submit *something* so we can provide some feedback!
- Programming Assignment 4 releases tomorrow (8/8)
 - No resubmission opportunities :(
 - New assignment, expecting some hiccups please ask questions if you're confused!
- Section tomorrow: TAs choice
 - TAs talking about CS topics that interest them
 - Attend any / all that interest you! We have a schedule on the Ed board
- Check-in 4 in section this upcoming Tuesday (8/13)
 - Final exam review, good practice
 - No longer guaranteeing that it will be a problem you'll see on a quiz
- Resubmission period 7 & 8 release
 - Extra resubmission opportunity open to *all* previous assignments!

Lecture Outline

- Announcements/Reminders
- Machine Learning (ML)
 - Definition / MLE
 - Applications
- ML Pipeline
- Spam Classifier
 - Decision Trees
- Questions to Consider

What is Machine Learning (ML)?

• Subset of Computer Science concerned with "learning" data trends

W UNIVERSITY of WASHINGTON

What is Machine Learning (ML)?

• Subset of Computer Science concerned with "learning" data trends

LEC 14: Machine Learning

• Simple example: maximum likelihood estimation (MLE)

D = (HHTHT)

What's the likelihood of the next coin flip being heads? $\theta = likelihood, n = flips seen, k = heads seen$

$$P(D|\theta) = \theta^k (1-\theta)^{n-k}$$

Goal: find $\hat{\theta}_{MLE}$, value that maximizes probability of what we saw

Maximum Likelihood Estimation

$$P(D|\theta) = \theta^k (1-\theta)^{n-k}$$

$$\hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} P(D|\theta)$$
$$= \operatorname{argmax}_{\theta} \log P(D|\theta)$$

$$\log P(D|\theta) = k \log \theta + (n-k) \log(1-\theta)$$
$$\hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} k \log \theta + (n-k) \log(1-\theta)$$

$$\frac{\partial}{\partial \theta} (k \log \theta + (n - k) \log(1 - \theta)) = 0$$
$$\frac{k}{\theta} - \frac{n - k}{1 - \theta} = 0$$

Maximum Likelihood Estimation

$$\frac{k}{\theta} - \frac{n - k}{1 - \theta} = 0$$

$$(1 - \theta)k - \theta(n - k) = 0$$

$$k - k\theta - \theta n + \theta k = 0$$

$$k - \theta n = 0$$

$$\hat{\theta}_{MLE} = k/n$$

Takeaway: There are formal, mathematical ways to verify intuition! + We can perform this process with more complicated distributions!

What is Machine Learning (ML)?

- Subset of Computer Science concerned with "learning" data trends
- Simple example: maximum likelihood estimation (MLE)
 - As $n \to \infty$, we know that $\hat{\theta}_{MLE} \to \theta^*$ (true distribution)
 - With enough data points, we can estimate any statistical distribution!
 - Central limit theorem: all probability distributions are effectively Gaussian...

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

What is Machine Learning (ML)?

- Subset of Computer Science concerned with "learning" data trends
- Simple example: maximum likelihood estimation (MLE)
 - As $n \to \infty$, we know that $\hat{\theta}_{MLE} \to \theta^*$ (true distribution)
 - With enough data points, we can estimate any statistical distribution!
 - Central limit theorem: all probability distributions are effectively Gaussian...

Given enough previous examples, we can estimate the underlying distribution and make predictions about... anything!

Estimation

Prediction

Seneration

Applications of ML

- Opinion Polls
 - How does a population feel about an issue?
- Content Recommendation
 - Can we predict how much someone will like a movie based on past ratings?
- Object Recognition
 - Identify {Car, Road, Plane, Bird, Person} within an image?
- Text Generation
 - Can computers generate text written like a human?
- Image Generation
 - Can computers generate images from a prompt

For each of the following, what would D and θ^* represent?

Lecture Outline

- Announcements/Reminders
- Machine Learning (ML)
 - Definition / MLE
 - Applications
- ML Pipeline
- Spam Classifier
 - Decision Trees
- Questions to Consider

ML Pipeline

• Generally, building an ML model involves the following steps:

- Notice that you can step backwards!
 - ML in particular is an applied science, it's all an experiment!

1. Data Collection

- We need example data to understand a distribution
 - Lots and lots of it too $(n \rightarrow \infty)$
- Where does this data come from?
 - Language: Reddit, Twitter, Facebook, Wikipedia, Blogs, etc.
 - Images: Google, Twitter, Websites
 - Code: Github
 - Really, anywhere publicly (or not) accessible on the Internet
- Who determines what data is used? $^{-}(^{\vee})_{-}$
 - Often companies buy preprocessed data from others
 - Let's say that you accidentally post your phone number on your twitter
 - A model could scrape that info, memorize it, and regurgitate it when prompted
- Data carries PII / bias that we need to account for

Data Bias

- Image results for searching the term "CEO" on Google (2015)
 - Notice anything about the results?

https://www.washington.edu/news/2015/04/09/whos-a-ceo-google-image-results-can-shift-gender-biases/

Data Bias

• Fix: Image results for searching "CEO" and "CEO United States" (2022)

https://www.washington.edu/news/2022/02/16/googles-ceo-image-search-gender-bias-hasnt-really-been-fixed

Data Sanitization

- Data carries PII / bias that we need to account for
- We don't want our model to memorize a phone number
 - Let's just remove all phone numbers from our inputs!
 - Is this an effective solution?
- Sanitization can be ethically gray does it disproportionately affect subpopulations?
 - E.g. Swear words & AAVE
 - Correlated features

Our models are only as strong as the data they're built upon. Garbage in, garbage out.

2. Featurization

- Now that we have all our data, we need to convert it into something a computer can understand (numbers)
 - How can we convert text / images into numbers?

• Determine what aspects of the data interest you (features)

- Words can be "vectorized"
 - Converted into *n*-dimensional vectors $n \in \{50, 200, 500, ...\}$
 - Determined from the word2vec algorithm
- Images are already numbers... (2d array of RGB values)

Word Embeddings

- We call these word vectors "embeddings" and they're pretty interesting to mess around with
- Can perform mathematical operations on them
 - Find the nearest vectors to any given word (synonyms)
 - Compute comparisons (dog is to puppy as cat is to ____)
 - Take the difference between puppy and dog (age vector) and add it to cat
 - Find the nearest vectors to the result and you'll likely see "kitten"
- These operations can further reveal bias
 - man is to doctor as woman is to _____
 - Any model trained from biased data points will estimate a biased distribution

3. Model Training

- Pick some way of using data to estimate
- Lots of different flavors of this
 - Regression (linear, logistic)
 - Neural Networks (CNNs, RNNs, Transformer, etc.)
 - Nearest neighbors
 - Decision trees
- Provide additional computation (memory / GPUs / time) until desired result is achieved

It's all one big experiment – try options until something sticks. This should feel somewhat concerning...

4. Evaluation

- Does your model actually work?
- Typically we split our initial dataset into 3 different subsets:
 - Train (provided to the model during training)
 - Test (used after a model has trained to compare to previous iterations)
 - Validation (used once a model has been chosen to see how it performs)
- Determine whether or not your model is over / underfitting

- Most ML applications go no further than this step
 - No attempt to determine *why* a particular model is working well

5. Deployment

- Put your model out into the real world and see what happens
 - Does it perform the job as expected? Should further work be put into development?
- At this point, often the next iteration of refinement takes place
 - GPT 2.0 -> 3.0 -> 3.5 -> 4.0
 - Options include:
 - Collect more data, use more compute, discover better tuning, discover better model
- Often, not much effort is put into understanding negative impacts
 - Case in point: ChatGPT and the education system

ML Pipeline

• That's it – in essence, that's how every ML model is created

Does this knowledge change your perspective on ML / AI?

Lecture Outline

- Announcements/Reminders
- Machine Learning (ML)
 - Definition / MLE
 - Applications
- ML Pipeline
- Spam Classifier
 - Decision Trees
- Questions to Consider

SpamClassifier

- Your last programming assignment will involve part 3 of this pipeline
 - You'll implement a *decision tree* capable of detecting spam emails
- Extra credit involves steps 1/2
 - Finding and featurizing another dataset

• Tree structure where each intermediary node contains a feature / threshold pair (split) and leaf nodes are labels

- Let's say we wanted to classify the following
 - "hello, i am here at your office but the door is locked. are you there?

- Let's say we wanted to classify the following
 - "hello, i am here at your office but the door is locked. are you there?

- Let's say we wanted to classify the following
 - "hello, i am here at your office but the door is locked. are you there?

- Let's say we wanted to classify the following
 - "hello, i am here at your office but the door is locked. are you there?

Lecture Outline

- Announcements/Reminders
- Machine Learning (ML)
 - Definition / MLE
 - Applications
- ML Pipeline
- Spam Classifier
 - Decision Trees

Questions to Consider

- Are ML Models actually capable of "learning" anything?
 - I.e. is it possible to "learn" just by observing / memorizing?
 - Does ChatGPT actually "understand" language?
- If all output from ML models is based on previous examples, who gets credit / takes responsibility for generation?
 - Think AI art and your C3 / P3 reflection responses
- What harm could come from deploying ML models we don't fully understand?
- If society itself is biased, how much should we worry about the bias present in data / ML models?
 - To what extent should concern about bias hinder further advancements?