
CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

CSE 123
L E C 1 3

Questions during Class?

Raise hand or send here

sli.do #cse123

Exhaustive Search /
Recursive Backtracking

Talk to your neighbors:

What’s your favorite refreshing
summer drink?

BEFORE WE START

Music: 123 24su Lecture Tunes ☀️

Instructor:

TAs:

Joe Spaniac
Andras
Daniel

Eric
Nicole

Sahej
Trien

Zach

https://open.spotify.com/playlist/2DPqntOkFwn1o2QZqpP99W

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Lecture Outline

• Announcements

• Exhaustive Search

- Decision trees

- Password Cracking

- Dead ends

• Recursive Backtracking

- Cipher Cracking

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Announcements

• Resubmission Period 5 due tonight (8/2) at 11:59pm

• Programming Assignment 3 due Wednesday (8/7) at 11:59pm

• Resubmission Period 6 opening tonight, due next Friday (8/9)
- Assignments available: P2, C3

• Last day of content on the final!
- Next week: Machine learning (ML) + SpamClassifier / Hashing

- Useful content, especially if you’re continuing to study CS

• Reminder: Grade Guarantee Calculator
- You’ve received many, many grades throughout this quarter

- Should have a good idea of what GPA you’re guaranteed

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Lecture Outline

• Announcements

• Exhaustive Search

- Decision trees

- Password Cracking

- Dead ends

• Recursive Backtracking

- Cipher Cracking

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Exhaustive Search
• Last application of recursion for the quarter!

• There are some problems computers are bad at solving
- Polynomial vs. Nonderministic Polynomial (P vs. NP)

• Password cracking / decrypting is a great example
- If breaking these were easy, the internet wouldn’t be useable

• So what do we do?
- The stupid way of solving the problem

- We “exhaustively search” through every possibility

• What do we need? Recursion + String accumulator (public / private
pair)

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Exhaustive Search Pattern
public static void search(input) {

search(input, “”);

}

private static void search(input, String soFar) {

if (base case) {

// Do something with soFar (e.g. print it out)

System.out.println(soFar);

} else {

// Might not be a loop, but 1 recursive call for each option

for (each option) {

search(input, soFar + option);

}

}

}

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Decision Trees
• Visual we use to help understand what our process is

- Not a data structure like a Binary Tree, just a visualization tool

- If you can make a decision tree you can implement exhaustive search

• Can glean important information
- Base case (end nodes)

- Recursive case (middle nodes)

- “Dead end” case (more on this later…)

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Password Cracker
• Let’s say we want to crack the password of a 4 digit combination lock

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Password Cracker
• Let’s say we want to crack the password of a 4 digit combination lock

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Password Cracker
• Let’s say we want to crack the password of a 4 digit combination lock

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Lecture Outline

• Announcements

• Exhaustive Search

- Decision trees

- Password Cracking

- Dead ends

• Recursive Backtracking

- Cipher Cracking

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Password Cracker
• Now, what if we knew the sum of all digits was 5?

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Password Cracker
• Now, what if we knew the sum of all digits was 5?

“”

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“00” “01” “02” “03” “04” “05” “06” “07” “08” “09”

“000” “001” “002” “003” “004” “005” “006” “007” “008” “009”

“0000” “0001” “0002” “0003” “0004” “0005” “0006” “0007” “0008” “0009”

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Updated Exhaustive Search Pattern
public static void search(input) {

search(input, “”);

}

private static void search(input, String soFar) {

if (base case) {

// Do something with soFar (e.g. print it out)

System.out.println(soFar);

} else if (not dead end) {

// Might not be a loop, but 1 recursive call for each option

for (each option) {

search(input, soFar + option);

}

}

}

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Lecture Outline

• Announcements

• Exhaustive Search

- Decision trees

- Password Cracking

- Dead ends

• Recursive Backtracking

- Cipher Cracking

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Recursive Backtracking
• Exhaustive search with a data structure accumulator(s)

- Now we have to deal with reference semantics…

• Major pattern: Choose, Explore, Un-choose
- All of the stack frames share the same one data structure

- Need to explicitly un-choose it so it’s not remembered in other frames

String soFar:

for (each option) {
search(input, soFar + option);

}

soFar

“”

soFar

“0”

soFar

“1”

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Recursive Backtracking
• Exhaustive search with a data structure accumulator(s)

- Now we have to deal with reference semantics…

• Major pattern: Choose, Explore, Un-choose
- All of the stack frames share the same one data structure

- Need to explicitly un-choose it so it’s not remembered in other frames

soFarList<Character> soFar:

for (each option) {
soFar.add(option);
search(input, soFar);
soFar.remove(soFar.size() – 1);

}

[]

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Recursive Backtracking
• Exhaustive search with a data structure accumulator(s)

- Now we have to deal with reference semantics…

• Major pattern: Choose, Explore, Un-choose
- All of the stack frames share the same one data structure

- Need to explicitly un-choose it so it’s not remembered in other frames

soFarList<Character> soFar:

for (each option) {
soFar.add(option);
search(input, soFar);
soFar.remove(soFar.size() – 1);

}

[‘0’]

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Recursive Backtracking
• Exhaustive search with a data structure accumulator(s)

- Now we have to deal with reference semantics…

• Major pattern: Choose, Explore, Un-choose
- All of the stack frames share the same one data structure

- Need to explicitly un-choose it so it’s not remembered in other frames

soFarList<Character> soFar:

for (each option) {
soFar.add(option);
search(input, soFar);
soFar.remove(soFar.size() – 1);

}

[‘0’]
soFar

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Recursive Backtracking
• Exhaustive search with a data structure accumulator(s)

- Now we have to deal with reference semantics…

• Major pattern: Choose, Explore, Un-choose
- All of the stack frames share the same one data structure

- Need to explicitly un-choose it so it’s not remembered in other frames

soFarList<Character> soFar:

for (each option) {
soFar.add(option);
search(input, soFar);
soFar.remove(soFar.size() – 1);

}

[‘0’]
soFar

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Recursive Backtracking
• Exhaustive search with a data structure accumulator(s)

- Now we have to deal with reference semantics…

• Major pattern: Choose, Explore, Un-choose
- All of the stack frames share the same one data structure

- Need to explicitly un-choose it so it’s not remembered in other frames

soFarList<Character> soFar:

for (each option) {
soFar.add(option);
search(input, soFar);
soFar.remove(soFar.size() – 1);

}

[]
soFar

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Recursive Backtracking
• Exhaustive search with a data structure accumulator(s)

- Now we have to deal with reference semantics…

• Major pattern: Choose, Explore, Un-choose
- All of the stack frames share the same one data structure

- Need to explicitly un-choose it so it’s not remembered in other frames

soFarList<Character> soFar:

for (each option) {
soFar.add(option);
search(input, soFar);
soFar.remove(soFar.size() – 1);

}

[‘1’]
soFar

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Recursive Backtracking
• Exhaustive search with a data structure accumulator(s)

- Now we have to deal with reference semantics…

• Major pattern: Choose, Explore, Un-choose
- All of the stack frames share the same one data structure

- Need to explicitly un-choose it so it’s not remembered in other frames

soFarList<Character> soFar:

for (each option) {
soFar.add(option);
search(input, soFar);
soFar.remove(soFar.size() – 1);

}

[‘1’]
soFar soFar

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Recursive Backtracking
• Exhaustive search with a data structure accumulator(s)

- Now we have to deal with reference semantics…

• Major pattern: Choose, Explore, Un-choose
- All of the stack frames share the same one data structure

- Need to explicitly un-choose it so it’s not remembered in other frames

soFarList<Character> soFar:

for (each option) {
soFar.add(option);
search(input, soFar);
soFar.remove(soFar.size() – 1);

}

[‘1’]
soFar soFar

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Recursive Backtracking
• Exhaustive search with a data structure accumulator(s)

- Now we have to deal with reference semantics…

• Major pattern: Choose, Explore, Un-choose
- All of the stack frames share the same one data structure

- Need to explicitly un-choose it so it’s not remembered in other frames

soFarList<Character> soFar:

for (each option) {
soFar.add(option);
search(input, soFar);
soFar.remove(soFar.size() – 1);

}

[]
soFar soFar

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Recursive Backtracking Pattern
private static void search(input, List<Character> soFar) {

if (base case) {

// Do something with soFar (e.g. print it out)

System.out.println(soFar);

} else if (not dead end) {

// Might not be a loop, but 1 recursive call for each option

for (each option) {

soFar.add(option); // Choose

search(input, soFar); // Explore

soFar.remove(soFar.size() – 1); // Unchoose

}

}

}

CSE 123 Summer 2024LEC 13: Exhaustive Search / Recursive Backtracing

Lecture Outline

• Announcements

• Exhaustive Search

- Decision trees

- Password Cracking

- Dead ends

• Recursive Backtracking

- Cipher Cracking

