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Questions during Class?

Raise hand or send here

sli.do    #cse123

Binary Search Trees

Talk to your neighbors:

Debrief Quiz 3. How do you feel like it 
went in comparison to Quiz 2?

BEFORE WE START

Music: 123 24su Lecture Tunes ☀️

Instructor:

TAs:

Joe Spaniac
Andras
Daniel

Eric
Nicole

Sahej
Trien

Zach

https://open.spotify.com/playlist/2DPqntOkFwn1o2QZqpP99W
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Announcements

• Quiz 3 Completed! 😮💨
- Congrats! Expect grades back around next Thursday(hopefully)

- Last quiz of the quarter – all that’s left is the final exam (last Friday of the 
quarter during our typical lecture timeslot)

• Creative Project 3 due tonight @ 11:59pm
- Submit something so we can give you feedback!

• P2 / R4 feedback out after lecture today

• Resubmission Period 5 closes this Friday (8/2) @ 11:59pm
- Available assignments: C2, P2

- Last opportunity to resubmit C2
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Binary Trees [Review]
• We’ll say that any Binary Tree falls into one of the following categories:

Empty tree
root == null

Node w/ two subtrees
root != null

root.left / root.right = Tree

This is a recursive definition! A tree is either empty or a node with two 
more trees!

null

1

Tree Tree
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Binary Search Trees (BSTs)
• We’ll say that any Binary Search Tree falls into the following categories:

Empty tree
root == null

Node w/ two subtrees
root != null

root.left / root.right = Tree

max(root.left) < x && min(root.right) > x

null

x

Tree Tree

< x > x

Note that not all Binary Trees are Binary Search Trees
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Why BSTs?
• Our IntTree implementation to contains(int value)

• Which direction(s) do we travel if root.data != value?
- Both left and right

• In a Binary Search Tree, should we check both sides?
- Remember, additional constraint: max(root.left) < root.data && 

min(root.right) > root.data

private boolean contains(int value, IntTreeNode root) {
if (root == null) {

return false;
} else {

return root.data == value ||
contains(value, root.left) ||
contains(value, root.right);

}
}
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BSTs & Runtime
• Contains operation on a balanced BST runs in O(log(n))

- Leverages removing half of the values at each step

- New runtime class unlocked!
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BSTs & Runtime
• Contains operation on a balanced BST runs in O(log(N))

- Leverages removing half of the values at each step

- New runtime class unlocked!

• Comparison between data structures:

• Let’s verify that this is true!

Operation ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) O(log(N))
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BSTs & Runtime
• Contains operation on a balanced BST runs in O(log(N))

- Leverages removing half of the values at each step

- New runtime class unlocked!

• Comparison between data structures:

• Let’s verify that this is true!

Operation ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) O(N)

O(log(N)) runtime is only guaranteed for BALANCED BSTs. Since our 
tree isn’t balanced, we see O(N) runtime!
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BSTs In Java
• Self-balancing BST implementations (AVL / Red-black) exist

- AVL better at contains, Red-black better at adding / removing

• Both the TreeMap / TreeSet implementations use self-balancing BSTs
- Determines said ordering via the Comparable interface / compareTo method

- Printing out shows natural ordering – preorder traversal

• Complete table comparing data structures:
Operation ArrayList LinkedList TreeSet

contains(x) O(N) O(N) O(log(N))

add(x) O(1*) O(1) O(log(N)*)

remove(x) O(N) O(N) O(log(N)*)

*It’s slightly more complicated but we’ll leave that for a higher level course


