W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees CSE 123 Summer 2024

Talk to your neighbors:

Debrief Quiz 3. How do you feel like it

CSE 123 went in comparison to Quiz 2?
Bi nary Sea rCh Trees Music: 123 24su Lecture Tunes £

Instructor: Joe Spaniac

TAs: Andras Eric Sahej Zach
Daniel Nicole Trien

Raise hand or send here

slido #csel23

https://open.spotify.com/playlist/2DPqntOkFwn1o2QZqpP99W

W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees CSE 123 Summer 2024

Lecture Outline

* Binary Trees

- Constructor

e Binary Search Trees (BSTs)
- Definition
- Why?

- Runtime

W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees

Announcements

* Quiz 3 Completed! @ =)

- Congrats! Expect grades back around next Thursday(hopefully)

- Last quiz of the quarter — all that’s left is the final exam (last Friday of the
quarter during our typical lecture timeslot)

* Creative Project 3 due tonight @ 11:59pm
- Submit something so we can give you feedback!

* P2 / R4 feedback out after lecture today
* Resubmission Period 5 closes this Friday (8/2) @ 11:59pm

- Available assignments: C2, P2
- Last opportunity to resubmit C2

CSE 123 Summer 2024

W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees CSE 123 Summer 2024

Lecture Outline

* Announcements

- Constructor

e Binary Search Trees (BSTs)
- Definition
- Why?

- Runtime

W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees CSE 123 Summer 2024

Lecture Outline

* Announcements

* Binary Trees

Constructor

Definition

- Why?

Runtime

W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees CSE123S

Binary Trees [Review]

* We'll say that any Binary Tree falls into one of the following categories:

null

Tree Tree

Empty tree Node w/ two subtrees

root == null root != null
root.left / root.right = Tree

This is a recursive definition! A tree is either empty or a node with two
more trees!

W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees CSE123S

Binary Search Trees (BSTs)

 We'll say that any Binary Search Tree falls into the following categories:

null

< X

Tree Tree

> X

Empty tree Node w/ two subtrees

root == null root != null
root.left / root.right = Tree

max(root.left) < x & & min(root.right) > x

Note that not all Binary Trees are Binary Search Trees

W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees CSE 123 Summer 2024

Why BSTs?

* Our IntTree implementation to contains(int value)

private boolean contains(int value, IntTreeNode root) {
if (root == null) {
return false;

T else {
return root.data == value ||
contains(value, root.left) ||
contains(value, root.right);
}

}

 Which direction(s) do we travel if root.data != value?
- Both left and right

* In a Binary Search Tree, should we check both sides?
- Remember, additional constraint: max(root.left) < root.data &&
min(root.right) > root.data

W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees CSE 123 Summer 2024

BSTs & Runtime

 Contains operation on a balanced BST runs in 0O(log(n))
- Leverages removing half of the values at each step
- New runtime class unlocked!

FaFF))| G ERRRTIGHD
R omn2)

Operations

O(n)

Oflog), O(1)

Elements

W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees CSE 123 Summer 2024

BSTs & Runtime

 Contains operation on a balanced BST runs in O(1log(N))
- Leverages removing half of the values at each step
- New runtime class unlocked!

* Comparison between data structures:

ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) O(log(N))

e Let’s verify that this is true!

W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees CSE123S

BSTs & Runtime

 Contains operation on a balanced BST runs in O(1log(N))
- Leverages removing half of the values at each step
- New runtime class unlocked!

* Comparison between data structures:

ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) O(N)

e Let’s verify that this is true!

O(Log(N)) runtime is only guaranteed for BALANCED BSTs. Since our
tree isn’t balanced, we see O(N) runtime!

W UNIVERSITY of WASHINGTON LEC 12: Binary Search Trees CSE 123 Summer 2024

BSTs In Java

* Self-balancing BST implementations (AVL / Red-black) exist
- AVL better at contains, Red-black better at adding / removing

* Both the TreeMap / TreeSet implementations use self-balancing BSTs
- Determines said ordering via the Comparable interface / compareTo method
- Printing out shows natural ordering — preorder traversal

* Complete table comparing data structures:

contains(x) O(N) O(N) O(log(N))
add(x) 0(1*) 0(1) O(log(N)*)
remove (X) O(N) O(N) O(log(N)*)

*It’s slightly more complicated but we’ll leave that for a higher level course

