
CSE 123 Summer 2024LEC 12: Binary Search Trees

CSE 123
L E C 1 2

Questions during Class?

Raise hand or send here

sli.do #cse123

Binary Search Trees

Talk to your neighbors:

Debrief Quiz 3. How do you feel like it
went in comparison to Quiz 2?

BEFORE WE START

Music: 123 24su Lecture Tunes ☀️

Instructor:

TAs:

Joe Spaniac
Andras
Daniel

Eric
Nicole

Sahej
Trien

Zach

https://open.spotify.com/playlist/2DPqntOkFwn1o2QZqpP99W

CSE 123 Summer 2024LEC 12: Binary Search Trees

Lecture Outline

• Announcements

• Binary Trees

- Constructor

• Binary Search Trees (BSTs)

- Definition

- Why?

- Runtime

CSE 123 Summer 2024LEC 12: Binary Search Trees

Announcements

• Quiz 3 Completed! 😮💨
- Congrats! Expect grades back around next Thursday(hopefully)

- Last quiz of the quarter – all that’s left is the final exam (last Friday of the
quarter during our typical lecture timeslot)

• Creative Project 3 due tonight @ 11:59pm
- Submit something so we can give you feedback!

• P2 / R4 feedback out after lecture today

• Resubmission Period 5 closes this Friday (8/2) @ 11:59pm
- Available assignments: C2, P2

- Last opportunity to resubmit C2

CSE 123 Summer 2024LEC 12: Binary Search Trees

Lecture Outline

• Announcements

• Binary Trees

- Constructor

• Binary Search Trees (BSTs)

- Definition

- Why?

- Runtime

CSE 123 Summer 2024LEC 12: Binary Search Trees

Lecture Outline

• Announcements

• Binary Trees

- Constructor

• Binary Search Trees (BSTs)

- Definition

- Why?

- Runtime

CSE 123 Summer 2024LEC 12: Binary Search Trees

Binary Trees [Review]
• We’ll say that any Binary Tree falls into one of the following categories:

Empty tree
root == null

Node w/ two subtrees
root != null

root.left / root.right = Tree

This is a recursive definition! A tree is either empty or a node with two
more trees!

null

1

Tree Tree

CSE 123 Summer 2024LEC 12: Binary Search Trees

Binary Search Trees (BSTs)
• We’ll say that any Binary Search Tree falls into the following categories:

Empty tree
root == null

Node w/ two subtrees
root != null

root.left / root.right = Tree

max(root.left) < x && min(root.right) > x

null

x

Tree Tree

< x > x

Note that not all Binary Trees are Binary Search Trees

CSE 123 Summer 2024LEC 12: Binary Search Trees

Why BSTs?
• Our IntTree implementation to contains(int value)

• Which direction(s) do we travel if root.data != value?
- Both left and right

• In a Binary Search Tree, should we check both sides?
- Remember, additional constraint: max(root.left) < root.data &&

min(root.right) > root.data

private boolean contains(int value, IntTreeNode root) {
if (root == null) {

return false;
} else {

return root.data == value ||
contains(value, root.left) ||
contains(value, root.right);

}
}

CSE 123 Summer 2024LEC 12: Binary Search Trees

BSTs & Runtime
• Contains operation on a balanced BST runs in O(log(n))

- Leverages removing half of the values at each step

- New runtime class unlocked!

CSE 123 Summer 2024LEC 12: Binary Search Trees

BSTs & Runtime
• Contains operation on a balanced BST runs in O(log(N))

- Leverages removing half of the values at each step

- New runtime class unlocked!

• Comparison between data structures:

• Let’s verify that this is true!

Operation ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) O(log(N))

CSE 123 Summer 2024LEC 12: Binary Search Trees

BSTs & Runtime
• Contains operation on a balanced BST runs in O(log(N))

- Leverages removing half of the values at each step

- New runtime class unlocked!

• Comparison between data structures:

• Let’s verify that this is true!

Operation ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) O(N)

O(log(N)) runtime is only guaranteed for BALANCED BSTs. Since our
tree isn’t balanced, we see O(N) runtime!

CSE 123 Summer 2024LEC 12: Binary Search Trees

BSTs In Java
• Self-balancing BST implementations (AVL / Red-black) exist

- AVL better at contains, Red-black better at adding / removing

• Both the TreeMap / TreeSet implementations use self-balancing BSTs
- Determines said ordering via the Comparable interface / compareTo method

- Printing out shows natural ordering – preorder traversal

• Complete table comparing data structures:
Operation ArrayList LinkedList TreeSet

contains(x) O(N) O(N) O(log(N))

add(x) O(1*) O(1) O(log(N)*)

remove(x) O(N) O(N) O(log(N)*)

*It’s slightly more complicated but we’ll leave that for a higher level course

