BEFORE WE START

Talk to your neighbors:

Recap Quiz 2 - how did it go? What will you do differently in preparing for Quiz 3?

Music: <u>123 24su Lecture Tunes</u>

Instructor:	Joe Spaniac			
TAs:	Andras Daniel	Eric Nicole	Sahej Trien	Zach

Questions during Class?

Raise hand or send here

CSE 123

Binary Trees

sli.do #cse123

Lecture Outline

- Announcements
- Binary Trees
 - Terminology
 - Recursive Definition
 - Tree Traversal
- Programming Binary Trees

Announcements

- Quiz 2 grades out!
 - Please check your grades before the next quiz, practice metacognition
- Quiz 3 in section on Tuesday, 7/30
 - Topics: Runtime; Recursion
 - Same policies as last time: One sheet of 8.5" x 11" notes (double-sided, printed or handwritten), 50mins, etc.
- Creative project 3 released last night, due 7/31 at 11:59pm
 - Last creative project of the quarter!
- Resubmission Period 4 closes tonight, 7/26 at 11:59pm
- Resubmission Period 5 opens tonight, due next Friday 7/19 at 11:59pm

Lecture Outline

- Announcements
- Binary Trees
 - Terminology
 - Recursive Definition
 - Tree Traversal
- Programming Binary Trees

- Last data structure of the quarter!
 - Very similar to LinkedLists...

- Last data structure of the quarter!
 - Very similar to LinkedLists...

- Last data structure of the quarter!
 - Very similar to LinkedLists...
- Linked TreeNodes w/ 3 fields:
 - int data, TreeNode left, TreeNode right
 - Doubly complicated!

- Last data structure of the quarter!
 - Very similar to LinkedLists...
- Linked TreeNodes w/ 3 fields:
 - int data, TreeNode left, TreeNode right
 - Doubly complicated!
- Similar to trees?

Tree Terminology

Tree Terminology

LinkedLists [Review]

• We'll say that any LinkedList falls into one of the following categories:

This is a recursive definition! A sublist is either empty or a node with another sublist!

• We'll say that any Binary Tree falls into one of the following categories:

This is a recursive definition! A tree is either empty or a node with two more trees!

Binary Tree Programming

- Programs look very similar to Recursive LinkedList!
- Guaranteed base case: empty tree
 - Simplest possible input, should immediately know the return
- Guaranteed public / private pair
 - Need to know which subtree you're currently processing (i.e. root)
- If modifying, we use x = change(x)
 - Don't stop early, return updated subtree (IntTreeNode)
- Let's trace through an example together...

Binary Tree Programming

Binary Tree Traversals

- 3 different primary traversals
 - All concerned with when you process your current root
- Pre-order traversal:
 - Process root, left subtree, right subtree
- In-order traversal:
 - Process left subtree, **root**, right subtree
- Post-order traversal:
 - Process left subtree, right subtree, root

Sometimes different traversals yield different results

Lecture Outline

- Announcements
- Binary Trees
 - Terminology
 - Recursive Definition
 - Tree Traversal
- Programming Binary Trees