
CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

CSE 123
L E C 1 0

Questions during Class?

Raise hand or send here

sli.do #cse123

Recursive
LinkedIntList

Talk to your neighbors:

What'

BEFORE WE START

Music: 123 24su Lecture Tunes ☀️

Instructor:

TAs:

Joe Spaniac
Andras
Daniel

Eric
Nicole

Sahej
Trien

Zach

https://open.spotify.com/playlist/2DPqntOkFwn1o2QZqpP99W

CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

Lecture Outline

• Announcements/Reminders

• Recursive Definitions

- Files

- LinkedLists

• Recursive Traversals

• LinkedList Modifications

- Iterative

- Recursive

CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

Announcements
• R4 feedback releases sometime after lecture today

• P2 due tonight (7/24) at 11:59pm
- Submit something so we can provide some feedback!

• Creative Project 3 releases tomorrow (7/25)
- Back to one week turnaround

• Check-in 3 in section tomorrow (7/25)
- Very, very similar problem to what you might see on a quiz

- Guaranteed to get feedback before the quiz on Tuesday if you attend

• Quiz 2 this upcoming Tuesday (7/30)
- Topics: Runtime; Recursion

- Note: Separate topics, we’ll never ask you to determine the runtime of a recursive
algorithm

CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

Lecture Outline

• Announcements/Reminders

• Recursive Definitions

- Files

- LinkedLists

• Recursive Traversals

• LinkedList Modifications

- Iterative

- Recursive

CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

Files
• We’ll say that computer files fall into one of the following categories:

Standard file (.txt, .csv, .java)
f.isDirectory() -> false

Directory w/ subfiles
f.isDirectory() -> true

File[] subFiles = f.listFiles()

This is a recursive definition! A File is either normal, or a directory with a
File[] of subFiles

CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

LinkedLists
• We’ll say that any LinkedList falls into one of the following categories:

Empty list
front == null

Node w/ another LinkedList
front != null

front.next = LinkedList

This is a recursive definition! A sublist is either empty or a node with
another sublist!

data next

4 LinkedListnull

CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

Lecture Outline

• Announcements/Reminders

• Recursive Definitions

- Files

- LinkedLists

• Recursive Traversals

• LinkedList Modifications

- Iterative

- Recursive

CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

Recursive Traversals w/ LinkedLists
• Guaranteed base case: empty list

- Simplest possible input, should immediately know the return

• Guaranteed public / private pair
- Need to know which sublist you’re currently processing (i.e. curr)

method(one) method(two) method(three) method(null)

1
front

2 3 null

CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

Lecture Outline

• Announcements/Reminders

• Recursive Definitions

- Files

- LinkedLists

• Recursive Traversals

• LinkedList Modifications

- Iterative

- Recursive

CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

Modifying LinkedLists [Review]

• Remember: using a curr variable to iterate over nodes

• Does changing curr actually update our chain?
- What will? Changing curr.next, changing front

- Need to stop one early to make changes

• Often a number of cases to watch out for:
- M(iddle) – Modifying node in the middle of the list (general)

- F(ront) – Modifying the first node

- E(mpty) – What if the list is empty?

- E(nd) – Rare, do we need to do something with the end of the list?

CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

Modifying LinkedLists Recursively

• Much easier than iterative solutions!

• No longer need to stop one early
- Can go right to the point you’d like to make the change

method(one) method(two) method(three) method(null)

1
front

2 3 null

CSE 123 Summer 2024LEC 10: Recursive LinkedIntList

Modifying LinkedLists Recursively

• Much easier than iterative solutions!

• No longer need to stop one early
- Can go right to the point you’d like to make the change

• How? Return the updated change and catch it!
- Private pair returns ListNode type

- curr.next = change(curr.next) / front = change(front)

- Resulting solutions much cleaner than iterative cases

• We call this pattern x = change(x)

