
CSE 123 Summer 2024LEC 01: Review; Comparable

CSE 123
LEC 01

Questions during Class?

Raise hand or send here

sli.do #cse123

Review;
Comparable!

Talk to your neighbors:
Introduce yourself to your neighbor!

What is your name? Major? What
have you been up to the past week?

BEFORE WE START

Music: 123 24su Lecture Tunes ☀️

Instructor:

TAs:

Joe Spaniac
Andras
Daniel

Eric
Nicole

Sahej
Trien

Zach

https://open.spotify.com/playlist/2DPqntOkFwn1o2QZqpP99W

CSE 123 Summer 2024LEC 01: Review; Comparable

Lecture Outline

• Introductions

• About this Course
- Course Components & Tools

- Making the Most of this Class

• OOP / Junit Review

• Comparable

CSE 123 Summer 2024LEC 01: Review; Comparable

Course Staff
• Instructor: Joe Spaniac

• Teaching Assistants: 7 Fantastic TAs!
- Available in section, office hours, and

discussion board

- Invaluable source of information &
help in this course

• We’re excited to get to know you!
- Our goal is to help you succeed ☺

http://cs.uw.edu/123/staff

CSE 123 Summer 2024LEC 01: Review; Comparable

What is this Class?

CSE 121 – Computer Programming I

- Data types (int, String, boolean)
- Methods / Functions

- Parameters, Returns

- Control structures
- Loops, Conditionals

- Arrays & 2D arrays
- Computational Thinking

(language agnostic)

CSE 122 – Computer Programming II
- Functional Decomposition
- File I/O

- Using data structures
- List, Stacks / Queues, Sets, Maps

- Object Oriented Programming
- Interfaces

CSE 123 – Computer Programming III

- Advanced Object Oriented Programming
- Comparable, Inheritance/Polymorphism, Abstract Classes

- Implementing data structures
- ArrayLists, LinkedLists, Trees

- Recursion

- Critical analysis of design

CSE 123 Summer 2024LEC 01: Review; Comparable

Why 123?

1. To solve more complex problems by leveraging more
complex programming structures / patterns

2. To better rationalize specific design decisions
- How to “best” structure classes to reduce redundancy
- Which ADT implementations are “most” appropriate to use

3. To understand and critically analyze intersections between
Computer Science and society
- Search engines, algorithmic art, machine learning, etc.
- Developing informed opinions on current issues

Be a better

programmer

Be a better

person

CSE 123 Summer 2024LEC 01: Review; Comparable

Lecture Outline

• Introductions

• About this Course
- Course Components & Tools

- Making the Most of this Class

• OOP / Junit Review

• Comparable

CSE 123 Summer 2024LEC 01: Review; Comparable

Course Website

cs.uw.edu/123

Get to know the staff

Contains most course info – check frequently!
Announcements, Calendar, Lecture Slides, Office Hours schedule,
Staff Bios, Important Links

https://cs.uw.edu/123

CSE 123 Summer 2024LEC 01: Review; Comparable

Other Course Tools

Ed
• Community & Information

• Discussion Board
(please ask & answer!; anonymous option)

• Chat
• Announcements

• Pre-Class Materials / Section Handouts
• Assignments

• Online IDE
• Submit assignments
• View Feedback

My Digital Hand
• Queueing in office hours

VSCode
• Develop offline
• Visual debugger

Canvas
• Lecture recordings

Sli.do
• In-class activities

(ungraded)
• No account needed

CSE 123 Summer 2024LEC 01: Review; Comparable

Lecture Outline

• Introductions

• About this Course
- Course Components & Tools

- Making the Most of this Class

• OOP / Junit Review

• Comparable

CSE 123 Summer 2024LEC 01: Review; Comparable

How Learning Works
• Learning requires active participation in the process. It’s not as simple as

sitting and listening to someone talk at you.

- Requires deliberate practice in learning by doing
- Benefits from collaborative learning

• Hybrid classroom model
- Asks you to do some preparation before class in the form

of readings and practice problems.
- Should take ~30 minutes a day

- Class will start with brief recap, then pick up
where the reading and practice problems leave off.

- Attendance isn’t graded, but showing up and trying
is the first step in succeeding in the class!

• Pre-class materials are ungraded, but…
- It’s okay if you find them challenging! That means

you are learning!

CSE 123 Summer 2024LEC 01: Review; Comparable

Getting Help
• Discussion Board

- Feel free to make a public or private post on Ed
- We encourage you to answer other peoples’ questions! A great way to learn

• Introductory Programming Lab (Office Hours)
- TAs can help you face to face in office hours, and look at your code
- You can go to the IPL with any course questions, not just assignments

• Section
- Work through related problems, get to know your TA who is here to support you

• Your Peers
- We encourage you to form study groups! Discord or Ed are great places to do that

• Email
- We prefer that all content and logistic questions go on the Ed discussion board (even if

you make them private). 80 of you >>> 8 of us!
- For serious personal circumstances, you can email Joe directly. It never hurts to email us,

but if it’s a common logistic question, we may politely ask you to post on the discussion
board instead.

CSE 123 Summer 2024LEC 01: Review; Comparable

Lecture Outline

• Introductions

• About this Course
- Course Components & Tools

- Making the Most of this Class

• OOP / Junit Review

• Comparable

CSE 123 Summer 2024LEC 01: Review; Comparable

Lecture Outline

• Introductions

• About this Course
- Course Components & Tools

- Making the Most of this Class

• OOP / JUnit Review

• Comparable

CSE 123 Summer 2024LEC 01: Review; Comparable

Comparable
• Comparable<E> is an interface that allows implementers to

define an ordering between two objects
• Used by TreeSet, TreeMap, Collections.sort, etc.

• One required method:
public int compareTo (E other);

• Returned integer falls into 1 of 3 categories
< 0: this is “less than” other
= 0: this is “equal to” other
< 0: this is “greater than” other

a.compareTo(b);

this other

CSE 123 Summer 2024LEC 01: Review; Comparable

Subtraction Trick
• compareTo implementation when comparing two integers (a) ascending:

• This is just subtraction!

• What if we wanted to sort descending?

• Warning: this only works for integers! Doubles have issues with truncation.

if (this.a < other.a) -> negative number

else if (this.a > other.a) -> positive number

else -> 0

this.a – other.a

other.a – this.a

