
CSE 123 Summer 2024 Final Exam

Name of Student: __

Section (e.g., AA):_____________________ Student Number (7 digits):______________________________

Do not turn the page until you are instructed to do so.

Rules/Guidelines:
● You must not begin working before time begins, and you must stop working promptly when time is called. Any

modifications to your exam (writing or erasing) before time begins or after time is called will result in a penalty.
● You are allowed one page of notes, no larger than 8.5 x 11 inches. You may not access any other resources or

use any electronic devices (including calculators, phones, or smart watches, among others) during the exam.
Using unauthorized resources or devices will result in a penalty.

● In general, you are limited to Java concepts or syntax covered in class. You may not use break, continue, a
return from a void method, try/catch, or Java 8 stream/functional features.

● You are limited to the standard Java classes and methods listed on the provided reference sheet. You do not need
to write import statements.

● If you abandon one answer and write another, clearly cross out the answer(s) you do not want graded and draw
a circle or box around the answer you do want graded. When in doubt, we will grade the answer that appears in
the space indicated, and the first such answer if there is more than one.

● If you require scratch paper, raise your hand and we will bring some to you.
● If you write an answer on scratch paper, please write your name and clearly label which question you are

answering on the scratch paper, and clearly indicate on the question page that your answer is on scratch paper.
Staple all scratch paper you want graded to the end of the exam before turning in.

● Answers must be written as proper Java code. Pseudocode or comments will not be graded.
● The exam is not graded on code quality. You are not required to include comments.
● You are also allowed to abbreviate System.out.print and System.out.println as S.o.p and S.o.pln

respectively. You may NOT use any other abbreviations.

ABIDE BY ANY AND ALL SENTENCE LIMITS PER PROBLEM. NOT DOING SO WILL RESULT IN
DEDUCTIONS

Grading:
● Each problem will receive a single E/S/N grade.
● Minor syntax errors will be ignored as long as it is unambiguous what was intended (e.g. forgetting a semicolon,

misspelling a variable name where there is only one close option). Major syntax errors, or errors where it is
unclear what was intended, may have an impact on your grade.

Advice:
● Read all questions carefully. Be sure you understand the question before you begin your answer.
● The questions are not necessarily in order of difficulty. Be sure you at least attempt every question.
● Write clearly and legibly. We cannot award credit for answers we cannot read.
● If you have questions, raise your hand to ask. The worst that can happen is we will say "I can’t answer that."
● Ask questions as soon as you have them. Do not wait until you have several questions.

Initial here to indicate you have read and agreed to these rules:

This page intentionally left blank

Nothing written on this page will be graded

1. Recursive Backtracking
Part A: Decision Trees
Consider the following decision tree for a recursive backtracking problem using a Stack<Integer> as an
accumulator. The desired results that are printed to the console are underlined.

Note that each of the squares within the diagram is attached to a circle containing a unique identifier which will
be used to answer the following question.

Based on the diagram, correctly locate nodes corresponding to each component of the general recursive
backtracking pattern (base case, dead-end case, recursive case) and copy their identifiers into the appropriate
boxes below. While there may be multiple correct identifiers, you only need to provide one for each box.

1. Base Case: 8, 9 2. Dead-end Case: 5, 6, 7 3. Recursive Case: 1, 2,
3, 4

Part B: Boolean Expressions
Given your answers above, synthesize Java boolean expressions for both the base and dead-end cases of the
backtracking algorithm pictured above. Importantly, these expressions should evaluate to true if we’re currently
in a base / dead-end case respectively.

1. Base Case: soFar.size() == 3
*other expressions that apply only to 8, 9 accepted

2. Dead-end Case: sum > 2 / sum == 3 || sum == 4
*other expressions that apply only to 5, 6, 7 accepted

Part C: Exhaustive Search vs. Recursive Backtracking
In 1-3 sentences, explain why in recursive backtracking we need to explicitly unchoose the last chosen option
(choose, explore, unchoose) in comparison to exhaustive search.

Hint: Remember that recursive backtracking uses data structures in some capacity (e.g. List<String>,
Stack<String>, Queue<String>, etc.) whereas exhaustive search does not.

Reference semantics - all recursive calls share a reference to a single data structure, meaning
changes are global. Unchoosing is necessary to return to the original state.

Exhaustive search uses non-objects, meaning every recursive call has its own copy of values and
changes are local not global.

2. Binary (Search) Trees
Part A: Binary Tree Traversals
Consider the following binary tree:

Provide the values within the tree in the order called for each of the possible traversal patterns:

Pre-order: [3, 4, 2, 1, 7, 6, 5]

In-order: [4, 1, 2, 3, 6, 7, 5]

Post-order: [1, 2, 4, 6, 5, 7, 3]

Part B: Binary Tree Comprehension
Consider the following code snippet implemented within the IntTree class:

public boolean mystery() {

return mystery(this.overallRoot);

}

public boolean mystery(IntTreeNode root) {

if (root == null || root.left == null && root.right == null) {

return true;

} else if (root.left == null || root.right == null) {

return false;

} else {

return mystery(root.left) && mystery(root.right);

}

}

Continued on next page -->

In 1-2 sentences, provide a plain english explanation as to what the mystery method accomplishes.
Remember, that your explanation should be at a high-level, avoiding implementation details.

Determines whether or not each node in a tree has either two children or no children (no single
branches).

Accepted terms such as: full, complete, balanced, etc.

Part C: Binary Search Trees
In 1 sentence, provide the tree traversal which when used printing out a BinarySearchTree (BST) will show
all values in their natural (sorted) order.

Pre-order Traversal
In-order Traversal
Post-order Traversal

Draw a picture below of the binary search tree that would result from inserting the following words into an
empty binary search tree in the following order: Fettuccine, Ravioli, Spaghetti, Conchiglie,

Macaroni, Farfalle

Assume the search tree uses alphabetical ordering to compare words.

Fettuccine
/ \

Conchiglie Ravioli
\ / \

Farfalle Macaroni Spaghetti

3. Redemption Programming
Part A: Comparable
Implement the compareTo method for the following Celebrity class as described in the method comment
below.
public class Celebrity implements Comparable<Celebrity> {

private String name;

private double netWorth;

// Constructor omitted for brevity

// Compares this celebrity to the provided other, ordering by netWorth (largest to

// smallest) then name (alphabetical).

public int compareTo(Celebrity other) {

if (this.netWorth > other.netWorth) {
return -1;

} else if (this.netWorth < other.netWorth) {
return 1;

} else {
return this.name.compareTo(other.name);

}

}

}

Now consider the Youtuber class, which is a subclass of Celebrity. fill in the class declaration blank
appropriately and implement its compareTo method as described in the method comment below.

public class Youtuber extends Celebrity, implements Comparable<Youtuber> {

private boolean canceled;
// Constructor omitted for brevity

// Compares this celebrity to the provided other, ordering by canceled status (not

// canceled to canceled) netWorth (largest to smallest) then name (alphabetical).

public int compareTo(Youtuber other) {

if (!canceled && other.canceled) {
return -1;

} else if (canceled && !other.canceled) {
return 1;

} else {
return super.compareTo(other);

}

}

}

Part B: ArrayIntList -> LinkedIntList
Implement the following constructor within the LinkedIntList class abiding by the provided comment. You
may not assume that any other instance methods implemented in section/lecture are implemented here, and
your solution should not include a size field / back pointer. The resulting implementation should run in at worst
O(n^2) complexity.

Your solution can be either iterative or recursive - whichever is most helpful in solving the problem.

// Reverse iterative O(N)

public LinkedIntList(int[] elementData, int size) {

for (int i = size - 1; i >= 0; i-) {

front = new ListNode(elementData[i], front);

}

}

// Normal iterative O(N)

public LinkedIntList(int[] elementData, int size) {

if (size != 0) {

front = new ListNode(elementData[0]);

ListNode curr = front;

for (int i = 1; i < size; i++) {

curr.next = new ListNode(elementData[i]);

curr = curr.next;

}

}

}

// Slow iterative O(N^2)

public LinkedIntList(int[] elementData, int size) {

for (int i = 0; i < size; i++) {

if (front == null) {

front = new ListNode(elementData[i]);

} else {

ListNode curr = front;

while (curr.next != null) {

curr = curr.next;

}

curr.next = new ListNode(elementData[i]);

}

}

}

// Recursive O(N)

public LinkedIntList(int[] elementData, int size) {

front = build(elementData, size, 0);

}

public ListNode build(int[] elementData, int size, int i) {

if (x >= size) {

return null;

}

return new ListNode(elementData[i],

build(elementData, size, i+1));

}

// Slow recursive O(N^2)

public LinkedIntList(int[] elementData, int size) {

for (int i = 0; i < size; i++) {

build(front, elementData[i]);

}

}

public ListNode build(ListNode front, int val) {

if (front == null) {

return new ListNode(val);

}

front.next = build(front.next, val);

return front;

}

