CSE 123 Summer 2024 Practice Final 1 Answer Key

Name of Student:

Section (e.g., AA): Student Number (7 digits):

Do not turn the page until you are instructed to do so.

Rules/Guidelines:

You must not begin working before time begins, and you must stop working promptly when time is called. Any
modifications to your exam (writing or erasing) before time begins or after time is called will result in a penalty.
You are allowed one page of notes, no larger than 8.5 x 11 inches. You may not access any other resources or
use any electronic devices (including calculators, phones, or smart watches, among others) during the exam.
Using unauthorized resources or devices will result in a penalty.

In general, you are limited to Java concepts or syntax covered in class. You may not use break, continue, a
return from a void method, try/catch, or Java 8 stream/functional features.

You are limited to the standard Java classes and methods listed on the provided reference sheet. You do not need
to write import statements.

If you abandon one answer and write another, clearly cross out the answer(s) you do not want graded and draw
a circle or box around the answer you do want graded. When in doubt, we will grade the answer that appears in
the space indicated, and the first such answer if there is more than one.

If you require scratch paper, raise your hand and we will bring some to you.

If you write an answer on scratch paper, please write your name and clearly label which question you are
answering on the scratch paper, and clearly indicate on the question page that your answer is on scratch paper.
Staple all scratch paper you want graded to the end of the exam before turning in.

Answers must be written as proper Java code. Pseudocode or comments will not be graded.

The exam is not graded on code quality. You are not required to include comments.

You are also allowed to abbreviate System.out.print and System.out.printlnasS.o.pandS.o.pln
respectively. You may NOT use any other abbreviations.

Grading:

Each problem will receive a single E/S/N grade.

Minor syntax errors will be ignored as long as it is unambiguous what was intended (e.g. forgetting a semicolon,
misspelling a variable name where there is only one close option). Major syntax errors, or errors where it is
unclear what was intended, may have an impact on your grade.

Advice:
e Read all questions carefully. Be sure you understand the question before you begin your answer.
e The questions are not necessarily in order of difficulty. Be sure you at least attempt every question.
e Write clearly and legibly. We cannot award credit for answers we cannot read.
e |f you have questions, raise your hand to ask. The worst that can happen is we will say "I can’t answer that."
e Ask questions as soon as you have them. Do not wait until you have several questions.

Initial here to indicate you have read and agreed to these rules:




This page intentionally left blank
Nothing written on this page will be graded



Inheritance and Comparable (A)

Take a look at the given classes.

public class Alarm { public class BuildingAlarm extends Alarm {}
private boolean onOff;
private int time; // in minutes public class FireAlarm extends BuildingAlarm {}

public Alarm() { public class PhoneAlarm extends Alarm {}
onOff = false;
time = 0;

}

public void turnOnOff() {
this.onOff = !this.onOff;

// sets an alarm "time"

// minutes into the future

public void setAlarm(int time) {
this.time = time;

}

Based on these classes, these methods will be added. For each method, state whether it's overriding,
overloading, or neither.

Class Added To Method Type
BuildingAlarm public void sendAlert() { Neither
System.out.println("Alert sent!");
}
FireAlarm public void sendAlert() { Overriding
System.out.println("Fire trucks!");
}
PhoneAlarm public void sleep() { Neither
setAlarm(5);
}

What’s a possible compareTo method that could be written here? Explain the return statement and what is
going to be compared (2-3 sentences).

We can compare on the basis of time since the method setAlarm is setting the alarm “time” amount in the
future. This way if time < other.time, we would return a negative number, time == other.time would be 0 as it's
tied, and time > other.time would be positive.




LinkedList (A)

Write a method removeRange that accepts a starting and ending index as parameters and removes the
elements at those indexes (inclusive) from the list. For example, if a variable list stores the following values:

[8,13,17,4,9,12,98, 41,7, 23, 0, 92]
And the following call is made:

listRange.removeRange(3, 8);

Then the values between index 3 and index 8 (the value 4 and the value 7) are removed, leaving the following
list:

[8, 13,17, 23, 0, 92]
You should throw an I1legalArgumentException if either of the positions is negative. Otherwise you may
assume that the positions represent a legal range of the list (0 <= start index <= end index < size of list).

Assume that you are adding this method to the LinkedIntList class as defined below:

public class LinkedIntList {
private ListNode front; // null for an empty list

public void removeRange(int left, int right) {
while (front != null && front.data >= left && front.data <= right) {
front = front.next;

}

ListNode curr = front;
while (curr != null && curr.next != null) {
if (curr.next.data >= left && curr.next.data <= right) {
curr.next = curr.next.next;
}else {
curr = curr.next;

}

}
}



Binary Trees (A)

Part A

What is the recursive definition of a Binary Tree?

Empty Tree / Node with left and right subtree

Part B

Write a method call calculate(Node root) that takes in a binary tree and returns the final result from all the
operations. Every intermediate node in the tree will contain an “operand” and all the leaf nodes will contain
numbers. The only operations possible are +, -, *, and /.

For example, the mathematical equation (4 + 2) + (2 * (6 - 4)) can be represented by the tree:

Running the method calculate() with this tree would return the integer 10. Assume that the given tree will
have at least 3 nodes (enough for one operation) and will always be in correct format (mathematically correct)



Write the method calculate(Node root):

’

public static int calculate(Node root) {
if (root.left == null && root.right == null) {
return root.data;
} else {
String operand = root.operand;

if (operand.equals("+")) {

return calculate(root.left) + calculate(root.right);
} else if (operand.equals("-")) {

return calculate(root.left) - calculate(root.right);
} else if (operand.equals("*")) {

return calculate(root.left) * calculate(root.right);
}else {

return calculate(root.left) / calculate(root.right);

}
}




CSE 123 Quiz/Exam Reference Sheet

(DO NOT WRITE ANY WORK YOU WANTED GRADED ON THIS REFERENCE SHEET. IT WILL NOT BE GRADED)

Methods Found in ALL collections (List, Set, Map)

clear ()

Removes all elements of the collection

equals (collection)

Returns t rue if the given other collection contains the same elements

isEmpty () Returns true if the collection has no elements
size () Returns the number of elements in a collection
toString() Returns a string representation suchas " [10, -2, 43]"
Methods Found in both List and Set (ArrayList, LinkedList, HashSet, TreeSet)
add (value) Adds value to collection (appends at end of list)

addall (collection)

Adds all the values in the given collection to this one

contains (value)

Returns true if the given value is found somewhere in this collection

iterator ()

Returns an Iterator object to traverse the collection's elements

remove (value)

Finds and removes the given value from this collection

removeAll (collection)

Removes any elements found in the given collection from this one

retainAll (collection)

Removes any elements not found in the given collection from this one

List<Type> Methods

add (index, value)

Inserts given value at given index, shifting subsequent values right

indexOf (value)

Returns first index where given value is found in list (-1 if not found)

get (index)

Returns the value at given index

lastIndexOf (value)

Returns last index where given value is found in list (-1 if not found)

remove (index)

Removes/returns value at given index, shifting subsequent values left

set (index, value)

Replaces value at given index with given value

Map<KeyType, ValueType> Methods

containsKey(key)

true if the map contains a mapping for the given key

get (key)

The value mapped to the given key (null if none)

keySet ()

Returns a set of all keys in the map

put (key, value)

Adds a mapping from the given key to the given value

putAll (Map)

Adds all key/value pairs from the given map to this map

remove(kEY)

Removes any existing mapping for the given key

toString () Returns a string such as " {a=90, d=60, c=70}"

values () Returns a Collection of all values in the map
Math Methods

abs (x) Returns the absolute value of x

max (x, y) Returns the larger of x and y

min(x, y) Returns the smaller of x and y

pow (x, y) Returns the value of x to the y power

random () Returns a random number between 0.0 and 1.0

round (x)

Returns x rounded to the nearest integer




string Methods

charAt (1) Returns the character in this String at a given index

contains (str) Returns true if this String contains the other's characters inside it
endsWith (str) Returns true if this String ends with the other's characters

equals (str) Returns t rue if this String is the same as str

equalsIgnoreCase (Str) | Returns true if this String is the same as s¢r, ignoring capitalization
indexOf (str) Returns the first index in this String where str begins (-1 if not found)
lastIndexOf (str) Returns the last index in this String where str begins (-1 if not found)
length () Returns the number of characters in this String

isEmpty () Returns t rue if this String is the empty string

startsWith (str) Returns true if this String begins with the other's characters
substring (i, J) Returns the characters in this String from index i (inclusive) to j (exclusive)
substring (i) Returns the characters in this String from index i (inclusive) to the end
toLowerCase () Returns a new String with all this String’s letters changed to lowercase
toUpperCase () Returns a new String with all this String’s letters changed to uppercase

Inheritance Syntax

public class Example extends BaseClass { public abstract class AbstractExample {
private type field; private type field;
public Example () {
field = something; public void method() {
} // do something
public void method () { }
// do something
} public abstract void abstractMethod() ;

} }

public interface InterfaceExample {
public void method() ;
}

ArraylintList LinkedIintList
public class ArrayIntList { public class LinkedIntList {
private int[] elementData; private ListNode front;
private int size;
} private static class ListNode {

public int data;
public ListNode next;

public ListNode (int data) {
this(data, null);
}

public ListNode (int data, ListNode next) {
this.data = data;
this.next = next;




