
Creative Project 1: Warm Up and Review

Specification

Overview
This assignment is intended to be a review and warm up for CSE 123. It will require you to use the
skills and concepts that you should be familiar with from your prior programming experience. It will
also serve as an introduction to your first IDE, Visual Studio Code. This is designed to help everyone
review and practice the programming skills that will be necessary to succeed in CSE 123. While we
don't necessarily expect everyone to find this assignment easy, if you find yourself having major
difficulties with any of the content, please contact the course staff to get support!

�� Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Use the Visual Studio debugger to go through a program line-by-line

Predict the behavior and results of executing a Java program that includes complex and/or
compound data

Identify errors in a Java program’s state or behavior, and implement fixes for identified errors

Write functionally correct Java programs that meet a provided specification using compound
data types

Write functionally correct Java classes to represent new, compound data types

� Assignment Structure
Unlike most future assignments in CSE 123, this assignment will consist of a series of individual
questions and problems. By focusing on a few separate and slightly smaller programming problems,
we can help you target your practice on the programming skills that will set you up for success in our
course.

Don't worry if you don't find this assignment particularly exciting since we are focusing on review
here. We will have many very exciting applications of programming in our future assignments!

To complete this assignment, you should go to each slide and complete the task(s). For quiz slides
(indicated by a blue clipboard icon), provide an answer to each question. For coding challenge slides
(indicated by a yellow angle brackets icon), upload your code to the workspace. When you have

successfully completed each slide, you will see the dot next to the slide title fill in. The assignment is
complete when you have a filled-in dot for every slide, including the "Final Submission" slide. The
problems can be worked on in any order.

� Feeling Stuck?
While we expect this assignment to be review, it's still OK if you find this assignment a bit challenging!
Remember that learning is a challenging process, and you don't have to do it alone!

You can visit the Introductory Programming Lab (IPL) to talk with a TA about programming
concepts or get help on assignments.

You can stop by instructor office hours to discuss course concepts or get help on assignments
or discuss the course in general.

You can post questions on the discussion board! You can make questions public (anyone can
see them) or private (only course staff can see them). This is a great way to asynchronously get
help on an assignment or ask questions about the course.

It is OK to get stuck and feel challenged by this assignment. However, note that this is intended to be
a warm-up for the type of programming we will be doing for the rest of the quarter, and the tasks we
will be solving in future weeks will be more complex than these problems and rely on a solid grasp of
the skills practiced in this assignment. If you feel like you cannot do this assignment at all, we
recommend reaching out to the course instructor(s) (cse123-instructors@cs.washington.edu) or the
CSE undergrad advisors (ugrad-adviser@cs.washington.edu) to discuss more about academic
planning and which programming course might be a good fit for your goals.

� Submission
When you are ready to submit, go to the "� Final Submission �" slide, read the statement and fill in
the box, then click "Submit" in the upper-right corner. You may submit as many times as you want
until the due date.

You can see your previous submissions by clicking the three dots icon in the upper-right and selecting
"Submissions and Grades." By default, we will grade your latest submission from before the deadline.
However, if you would like us to grade a different submission, you can select that submission on the
left side of the window and click "Set final." Note that we will not grade any submission made after
the deadline-- if you mark a submission after the deadline as final, we will grade your most-recent
on-time submission instead.

Please make sure you are familiar with the resources and policies outlined in the syllabus and the
programming assignments page.

Recommended Development Process

The general process we're expecting you to follow when working on and submitting HW assignments
is slightly different from previous courses now that you have an IDE (VSCode)! You should

1. Download the provided .zip file

2. Find it in Finder / File Explorer

3. Unzip it to get the folder with relevant files.

4. In VSCode, click File > Open Folder, and select the recently unzipped folder to open it!

This process is outlined in the following .gif (mac shown, but the process would be the same for
windows with File Explorer)

Then, once you've finished, you should re-upload your code by copy-pasting or drag-dropping the
files back into Ed! At this point you can run tests via the Test button.

Debugging

C1_Debugging.zip

Background
Before you begin this assignment, you need to download and set up Visual Studio Code with the CSE
123 Profile! If you have not done so already (either in section or by yourself), you can do this here!

Once you have set up the Visual Studio "IDE" (integrated development environment – an application
that helps you code), download and open the file below. You will have to determine the correct code
needed to defuse the bomb by using the debugger (more info the the following video / on the course
website). Time is of the essence and the fate of the world rests in your hands!

Download starter code:

NOTE: You should only need to update line 30 of the provided file: defuse("00000"); to the defusal code
you determine using the VSCode debugger!

WARNING: We're trying our best to encourage you to use the VSCode debugger here, so you may find that
printlns don't actually print anything! This is expected behavior :)

The following video will walk you through some of the useful features of the VSCode debugger. Watch
the video, and then defuse the bomb!

An error occurred.

Try watching this video on www.youtube.com, or enable JavaScript if it is
disabled in your browser.

(https://youtu.be/_UjyHwBZT6k)

NOTE: This assignment has slightly changed since this video walkthrough was made, meaning the first
character of the code you uncover will likely differ from the one found in the video itself. However, the process

outlined should be exactly the same!

Coding Workspace

C1_Workspace.zip

Expand

Download starter code:

The next part of this assignment will consist of two independent problems whose specifications are
listed below. However, you might notice that this workspace is empty! Rather than coding directly in
Ed, we highly encourage you instead download the above file such that you can program locally on
your computer via VScode (or another IDE of your choice). Doing so will allow you to use an actual
debugger and let you work on assignments without internet connection!

Note that after working locally, you should be reuploading your completed .java files to Ed so that
you can test them with the Test button in the bottom right before submitting.

Classes/Interfaces - Media [Book.java and Media.java]

Write a Java class called Book that implements the provided Media interface and represents a
book. For books, the artists are considered to be the author(s).

Your class should have three constructors:

public Book(String title, String author)

Creates a book with the provided title and single author.

public Book(String title, List<String> authors)

Creates a book with the provided title and multiple authors.

public Book(String title, String author, Scanner sc)

Creates a book with the provided title, author, and scanner connected to a file containing all
words within the book

NOTE: Any book objects constructed not using the Scanner constructor should return an empty list if
.getWords() is called on them

The title and author(s) should not be able to be modified by a client after creation.

NOTE: When writing your class, be sure to follow all guidelines in the Code Quality Guide and
Commenting Guide.

Expand

Expand

Any additional helper methods created, but not specified in the spec, should be declared private.

Collections - Inverted Index [InvertedIndex.java]

Write a method called createIndex that creates an inverted index for a list of documents. Your
method should take one argument, a list of Media "documents".

NOTE: You can call .getWords() on a Media object as described within the interface to get a list of all
words within the document!

Your method should return a map where the keys are individual words that appear in the
parameter list of documents and the values are sets of documents in which those words appear.

For example, suppose each element the documents list contains the following words:

[Raiders of the Lost Ark, The Temple of Doom, The Last Crusade]

In this case, the call createIndex(documents) would return the following map:

{ark=[Raiders of the Lost Ark], crusade=[The Last Crusade], doom=[The Temple of Doom], last=[The Last Crusade],
 lost=[Raiders of the Lost Ark], of=[The Temple of Doom, Raiders of the Lost Ark], raiders=[Raiders of the Lost Ar
 temple=[The Temple of Doom], the=[The Temple of Doom, The Last Crusade, Raiders of the Lost Ark]}

The keys of the returned map should be case-insensitive (i.e. treat "The" and "the" as the same
word). The keys of the returned map should be in sorted order, while the sets in the values should
prefer fast lookup speed.

You may assume that the parameter passed in is non-null, that each element of the parameter is
non-null, and that word lists are non-empty.

NOTE: When writing your class, be sure to follow all guidelines in the Code Quality Guide and
Commenting Guide.
Any additional helper methods created, but not specified in the spec, should be declared private.

WARNING: Your implementation should only iterate over the provided documents list one time. We
consider any alternative implementations inefficient.

Testing [Testing.java]

We have provided an incomplete Testing.java file that you should update lines according to the

guiding comments within. You should only have to change 9 lines of code within this file such that
it compiles and accurately tests your implementations.

WARNING: We've provided you a test that checks if your Testing.java file compiles and no tests fail. It
does not check that the appropriate updates were made according to the comments within the file. It is
your responsibility to make sure that you're updating the file correctly.

We recommend reading over this file to better understand how to write JUnit tests. As the quarter
progresses, we will be providing you less testing guidance so if you have any questions or
confusions it's best to ask them now!

Search Engine

C1_SearchEngine.zip

Download starter code:

Once you've completed all aspects of the assignment, we can put all these pieces together into an
application! Most of the work has been done for you here, but you'll have to integrate your
implementations from the workspace slide. This will involve 2 main steps

1. Paste your implementation of Book within Book.java

2. Paste your implementation of createIndex @ line 37

WARNING: We've noticed that sometimes VSCode will automatically include an import for
javax.print.attribute.standard.Media; . Please delete this if you notice it present within your
SearchClient.java file!

NOTE: You don't need to worry about reuploading the books directory as it's already included in the scaffold!

Once you've done these 2 things hit the run button to see your hard work! You'll have a working
search engine over all the books within the books directory!

Creative Extension
It turns out that creating an inverted index is only half of the battle when creating a search engine. If
we want our version to be on-par with the likes of Google, we also need to create a ranking system
that sorts more relevant documents before less relevant ones. To do so, we'll employ the Comparable
interface we learned about in class!

The only tricky part is that for our ranking algorithm to be useful, our compareTo method should
know what query the user entered (such that it can determine if this or other is more relevant)
when compareTo can only take in one other parameter. To get around this, we'll store the current
query within each Book object via a field / setQuery method we call before sorting.

NOTE: This workaround is not the best way of sorting using a value not related to specific instances (the query
in this case). Something like a Comparator would likely be a better choice, but doing so is out of the scope of
the course and disallowed, so we'll use our workaround instead.

This will involve 3 concrete steps:

1. Add public void setQuery(String query); to Media.java and write an implementation for
setQuery in Book.java that stores the current query in a field.

2. Make Book.java also implement the Comparable interface and write a corresponding
compareTo method

1. This is where you can get creative! How do you want to rank books? Our only
requirement is that you use the query somehow, but remember that you have other
information (ratings, title, author[s]) at your disposal!

3. Uncomment line 52 within SearchClient.java and change line 99 to a TreeSet such
that your ordering is used

1. Note these line numbers might change after pasting in your createIndex
implementation, but all are marked with a "TODO" comment you can search for within
the file

WARNING: We require that your ranking algorithm uses the current query somehow. A ranking algorithm that
only uses ratings would not be eligible for full points on this assignment

Once you've finished these steps, you have a working search engine that can compete with the likes
of Google! Try using it on the provided files. Does the ordering of the results make sense?

Reflection

Question 1

No response

Question 2

No response

Question 3

The following questions will ask that you practice metacognition to reflect on the topics covered on
this assignment and your experience completing it. For each question, focus on your plan and/or
process for working through the assignment along with the CS concepts. Think about things like how
you organized your working time, what sorts of things tended to go wrong, and how you dealt with
those errors or mistakes.

Please answer all questions.

Describe your process using the VSCode debugger in the Debugging problem (Bomb.java). What
skills have you learned or practiced to help you when debugging code? How will you use or adapt this
process for future assignments?

Choose either the Inverted Index or Media problem: describe how you went about testing that the
code you wrote for that problem was correct and met the requirements. What specific test cases did
you consider? Why were those cases important?

The next 3 questions will require you reflect on your experience implementing a search engine and
respond to the following video (9m 19s):

An error occurred.

Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser.

No response

Question 4

No response

Question 5

No response

Question 6

No response

Question 7

No response

Question 8

(https://youtu.be/_vBggxCNNno)

At Google, who's responsibility do you think it is to come up with moral rules and judgements
surrounding search engine ranking results as described in the video? (Executives, managers, software
engineers, other)

Do you think that they should have that power / responsibility? Why?

Do you think search engine providers (Google, Bing, etc.) have an obligation to remind their users
that "unbiased, clean search results" can't truly exist as mentioned within the video? Why?

If you do think so, are they currently acting on that obligation? Why might that be the case?

How do you feel about the video's claim that software reflects the biases of the programmer? Do you
agree / disagree? Why?

Have you ever encountered biased programs / applications in your day-to-day life?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

No response

Question 9

No response

Question 10

No response

Question 11

No response

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

I attest that the work I am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If I have any concerns about this
policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

