
Programming Assignment 3: Huffman

Background �

ASCII and Binary Representation

In Java, every char has an equivalent int value between 0 and 255. For example:

public class Client {
 public static void main(String[] args) {
 char c1 = 'a';
 char c2 = 'z';
 System.out.println("'" + c1 + "' has an int value of " + ((int) c1));
 System.out.println("'" + c2 + "' has an int value of " + ((int) c2));
 }
}

In this assignment, we will go a step further: computers actually see integers as binary (1's and 0's).
Binary is a lot like the normal numbers we use, except it’s based around 2 instead of 10. For example,
“1204” is written that way, because

1204 = 1 ⋅ 10 +3 2 ⋅ 10 +2 0 ⋅ 10 +1 4 ⋅ 100

Similarly, because

97 = 0 ⋅ 2 +7 1 ⋅ 2 +6 1 ⋅ 2 +5 0 ⋅ 2 +4 0 ⋅ 2 +3 0 ⋅ 2 +2 0 ⋅ 2 +1 1 ⋅ 20

97 is "01100001" in binary! In fact, all char 's can be written using exactly 8 binary digits (also known
as bits). This encoding, which is used pretty universally by computers, is called ASCII.

Huffman Encoding

Huffman encoding is an algorithm devised by David A. Huffman of MIT in 1952 for compressing data
to make a file occupy a smaller amount of space. Unbelievably, this algorithm is still used today in a
variety of very important areas. For example, mp3s and jpgs both use Huffman Coding. The general
idea behind Huffman Coding is the following: What if we used fewer than 8 bits for characters
that are more common?

Consider the following (simple) example. Imagine we have the following data in a text file:

bbbbaa
cccaaa
ddaa

How many bits would it take to store with ASCII Coding?

First, we find the ASCII code for each letter:

a → 01100001

b → 01100010

c → 01100011

d → 01100100

Since each line has 80 letters, and each letter code is 8 bits, the number of bits required is:

80 ⋅ 8 ⋅ 4 = 2560

How many bits would it take to store with Huffman Coding?

Since a has the highest frequency, we use a short code for it, then we use the next (longest) short
code for b , etc:

a → 1

b → 00

c → 011

d → 010

This data has 229 a ’s, 4 b ’s, 3 c ’s, and 2 d ’s. Since we need one bit for a , two for b , and three for
c and d , the total count of bits is:

229 ⋅ 1 + 4 ⋅ 2 + 3 ⋅ 3 + 2 ⋅ 3 = 255

Whoa! By changing the coding, we compressed the data by a factor of 10!

Spec Walkthrough

An error occurred.

Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your
browser.

Building a Huffman Code �

In the previous slide, we magically arrived at the special binary sequences to be used as codes. In this
section, we explain the algorithm to create these special binary sequences. Throughout this section,
we will use the following text (which can be found in simple-spec-example.txt):

aba ab cabbb

Step 1: Count the Frequencies of the Characters

The file simple-spec-example.txt has the characters 'a' , 'b' , 'c' , and ' ' . Counting up the
frequencies, we get the following:

' ' → 2

'a' → 4

'b' → 5

'c' → 1

Step 2: Create a Priority Queue Ordered By Frequency

Since our ultimate goal is to create a code based on frequencies, we need to use a data structure that
helps us keep track of the order of the letters based on frequencies. We will use a priority queue for
this. A priority queue is a queue that is ordered by priorities (in this case frequencies) instead of FIFO
order. In other words, we can ask the priority queue to insert a new element (add(element)) and we
can ask it to remove the highest priority element (remove()). We will use the PriorityQueue<E>
class in Java for the implementation of priority queues, but we will still use the Queue<E> interface
for variables. For example, to create a priority queue of integers: Queue<Integer> pq = new
PriorityQueue<>();

For our Huffman Code, we want to remove the node with lowest frequency first. (Intuitively, the
reason is that the things we remove first will end up having the longest codes). We begin by creating a
node for each letter in our text:

In Java, if you print out a priority queue, the elements will not appear in priority order. This is expected
behavior, and can’t be easily changed.

Step 3: Combine the Nodes Until Only One is Left

Now that we have a priority queue of the nodes, we want to put them together into a tree. To do this,
we repeatedly remove the smallest two (the ones at the front of the priority queue) and create a new
node with them as children. (The new node does not have a character associated with it.) Note that
the priority queue is arbitrary in how it breaks ties; you should just take nodes in the order the
priority queue provides them.

Step 3a: Remove Two Smallest

First, remove the smallest two nodes from the priority queue:

Step 3b: Combine Them Together

 Then, create a new node. The frequency is the sum of two nodes:

Step 3c: Add Back To Priority Queue

Now that we have a “new node”, add it back to the priority queue:

We repeat this process until there is only one node left in the priority queue. Here are the remaining
steps (each time, we remove the two smallest frequencies, combine them, and put the result back):

Now that we only have one node left, we can use the tree we constructed to create the Huffman
codes!

Step 4: Read Off the Huffman Codes

At this point, the frequencies of the letters have already been taken into account; so, we no longer
even look at them. Thus, the tree we’ve constructed looks like the following:

To figure out the Huffman code for a letter, we traverse the tree from the root to the node with the
letter in it. When we go left, we print a 0 and if we go right, we print a 1. For example, 'c' would be
100, because we go right, then left, then left to reach it.

Just like in BrunelleFeed, we will output the tree in “standard format”. Notice that the only actual
information is in the leaves of the tree. So, the code file—which you can get by asking the main to
“make a code”—will consist of line pairs: the first line will be the ASCII value of the character in the
leaf and the second line will be the Huffman code for that character. For example, the output of the
tree we just constructed would look like the above. The leaves should appear in the order of a pre-
order traversal.

Specification �

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Implement a well-designed Java class to meet a given specification.

Define data structures to represent compound and complex data

Write a functionally correct Java class to represent a binary tree.

Implement the Comparable interface.

Write classes that are readable and maintainable, and that conform to provided guidelines for
style, implementation, and performance.

Produce clear and effective documentation to improve comprehension and maintainability of
programs, methods, and classes.

Overview
Now that we know how to construct a Huffman code, we are ready to understand the Huffman
compression and decompression algorithms. Here is an overview of how they work:

Compression Algorithm

1. HuffmanCompressor generates the frequencies in a given file.

2. HuffmanCode creates the Huffman code from the frequencies.

3. HuffmanCode writes out the Huffman codes to a .code file.

4. HuffmanCompressor writes a .short file.

Decompression Algorithm

1. HuffmanCode reads in a .code file in standard format.

2. HuffmanCode writes out a .new file.

Expand

Expand

Client Program
HuffmanCompressor is a client program that we will provide to you. In addition to handling user
interactions, it implements some of the steps of the compression and decompression algorithms that
we are not asking you to deal with. Specifically, HuffmanCompressor handles:

computing character frequencies for a given input file (these frequencies are passed to the first
HuffmanCode constructor described below)

compressing a text file using a given Huffman tree

producing a BitInputStream from a given compressed input file (this stream is passed to the
translate method)

You do not need to implement any of the above behavior. You only need to implement the behavior
and methods described below. You may click "Expand" below to see a sample execution of each step
(user input is bold and underlined).

Making a Huffman Code (produces .code file)

Compressing a File (produces .short file)

Decompressing a File (produces .new file)

Expand

Expand

Compressing and then Decompressing a File (produces .short and .new file)

Required Class
In this assignment, you will create a class called HuffmanCode to be used in compression of data. You
are provided with a client program, HuffmanCompressor.java , that handles user interaction and calls
your HuffmanCode methods to compress and decompress a given file.

Your HuffmanCode class must include the following methods:

public HuffmanCode(int[] frequencies)

This constructor should initialize a new HuffmanCode object using the algorithm described
above for building a Huffman code from an array of frequencies. frequencies is an array of
frequencies where frequences[i] is the count of the character with ASCII value i .

Make sure to use a PriorityQueue to build the Huffman tree.

If there exists a character with a frequency 0, the character should not be included in the
HuffmanCode object.

≤

public HuffmanCode(Scanner input)

This constructor should initialize a new HuffmanCode object by reading in a previously
constructed code from a .code file. You may assume the Scanner is not null and always
contains data encoded in legal, valid standard format (see below).

public void save(PrintStream output)

This method should store the current Huffman Code to the given output stream in the standard
format (see below).

public void translate(BitInputStream input, PrintStream output)

This method should read individual bits from the input stream and write the corresponding
characters to the output. It should stop reading when the BitInputStream is empty. You may
assume that the input stream contains a legal encoding of characters for this tree’s Huffman
Code. See below for the methods in the BitInputStream class.

HuffmanNode

Your HuffmanCode class must also include a class called HuffmanNode as a private static inner

class of HuffmanCode (recall Commit in Repository from Mini-Git and QuizTreeNode in QuizTree
from BrunelleFeed). The contents of this class are up to you, but in particular, you must meet the
following requirements:

Your HuffmanNode class must implement the Comparable<E> interface, using frequencies to
order nodes.

The fields of the HuffmanNode class must be public .

All data fields should be declared final as well. This does not include fields representing
the children of a node.

BitInputStream

The provided BitInputStream class reads data bit by bit. This will be useful for the translate
method in HuffmanCode . The interface for BitInputStream works very much like a Scanner and
should be used similarly. BitInputStream has the following methods:

public int nextBit()

This method returns the next bit in the input stream. If there is no such bit, then it throws a
NoSuchElementException .

public boolean hasNextBit()

This method returns true if the input stream has at least one more bit, and false otherwise.

.code File Format
The .code files that are both created by the save method and read by the Scanner constructor will
follow the same format. These files will contain a pair of lines to represent each character in the
Huffman code. The first line in each pair will contain the ASCII code of the character, and the second
line will contain the Huffman encoding for that character.

For example, consider the following sample file (simple-spec-example.code):

98
0
99
100
32
101
97
11

This file represents a Huffman code in which the character 'b' (ASCII code 98) has the encoding 0 ,
'c' (ASCII code 99) has the encoding 100 , ' ' (ASCII code 32) has the encoding 101, and 'a'

(ASCII code 97) has the encoding 11.

HINT: You can get the ASCII code of a char by casting the value to an int .

Creative Aspect (secretmessage.short and
secretmessage.code)

Along with your program, you should turn in files named secretmessage.short and
secretmessage.code that represents a “secret” compressed message from you to your section TA
and its code file. The message can be anything you want, as long as it is not offensive. Your section TA
will decompress your message with your tree and read it while grading.

You can create a file called secretmessage.txt in the Ed editor and use your Huffman compression
algorithm to create secretmessage.short and secretmessage.code . You should delete
secretmessage.txt afterward, as that file contains your "secret" message.

Implementation Guidelines �

Expand

Expand

Expand

Expand

Your program should exactly reproduce the format and general behavior demonstrated in the Ed
tests. Note that this assignment has two mostly separate parts: creating a Huffman code and
decompressing a message using your Huffman code. Of the four methods to implement, two are
relevant to each part. Our recommended approach is as follows: first, implement the required
methods for creating a Huffman Code, and then proceed with implementing the methods for
decompressing a message. See below for more details about the process.

Creating a Huffman Code
You will write methods to (1) create a Huffman code from an array of frequencies and (2) save the
code you’ve created in standard format.

Frequency Array Constructor

save

Decompressing A Message
Next, you will write methods to (1) read in a .code file created with save() and (2) translate a
compressed file back into a decompressed file.

Scanner Constructor

translate

Code Quality �
As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.

In particular, pay attention to these requirements:

x = change(x) :

An important concept introduced in lecture was called x = change(x) . This idea is
related to the proper design of recursive methods that manipulate the structure of a
binary tree. You should follow this pattern where necessary when modifying your
trees.

Avoid redundancy:

Create “helper” method(s) to capture repeated code. As long as all extra methods you
create are private (so outside code cannot call them), you can have additional methods in
your class beyond those specified here.

If you find that multiple methods in your class do similar things, you should create helper
method(s) to capture the common code.

Data Fields:

Properly encapsulate your objects by making data fields in your HuffmanCode class
private. (Fields in your HuffmanNode class should be public following the pattern from
class.)

Avoid unnecessary fields; use fields to store important data of your objects but not to
store temporary values only used in one place.

Fields should always be initialized inside a constructor or method, never at declaration.

Commenting

Each method should have a comment including all necessary information as described in
the Commenting Guide. Comments should be written in your own words (i.e. not copied
and pasted from this spec) and should not include implementation details.

Huffman -- contains scaffold DO NOT PUBLISH

Be sure to complete all files:

HuffmanCode.java : the main Huffman program

Upload secretmessage.code and secretmessage.short

Instructions on how to run this assignment are different than most assignments. You can run your
program as follows:

Clicking "Terminal" and "Click here to activate the terminal" will run HuffmanCompressor.java
and save output files to your workspace

Click "Reset" in the top right of the terminal if you have already activated the terminal, this will
re-run HuffmanCompressor.java

Clicking "Mark" will run all tests on HuffmanCode AND submit your code.

You can safely ignore the following message from the terminal:
Note: Some input files use or override a deprecated API that is marked for removal.
Note: Recompile with -Xlint:removal for details.

Huffman

Huffman.zip

Download starter code:

Be sure to complete all files:

HuffmanCode.java : the main Huffman program

Upload secretmessage.code and secretmessage.short

Instructions on how to run this assignment are different than most assignments. You can run your
program as follows:

Clicking "Terminal" and "Click here to activate the terminal" will run HuffmanCompressor.java
and save output files to your workspace

Click "Reset" in the top right of the terminal if you have already activated the terminal, this will
re-run HuffmanCompressor.java

Clicking "Mark" will run all tests on HuffmanCode AND submit your code.

You can safely ignore the following message from the terminal:
Note: Some input files use or override a deprecated API that is marked for removal.
Note: Recompile with -Xlint:removal for details.

Reflection

Question 1

No response

Question 2

No response

Question 3

No response

Question 4

No response

Question 5

No response

The following questions will ask you practice metacognition to reflect on the topics covered on this
assignment and your experience completing it. For each question, focus on your plan and/or process
for working through the assignment along with the CS concepts. Think about things like how you
organized your working time, what sorts of things tended to go wrong, and how you dealt with those
errors or mistakes.

Please answer all questions.

What are some situations in which compression, and lossless compression in particular, would be
important?

Do you think Huffman coding is always a good choice for compression? Can you imagine scenarios in
which we might not want to use Huffman coding? Why or why not?

Describe how you went about testing your implementation. What specific situations and/or test cases
did you consider? Why were those cases important?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

Question 6

No response

Question 7

No response

Question 8

No response

Question 9

No response

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

I attest that the work I am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If I have any concerns about this
policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

[OLD] Specification

Background �

ASCII and Binary Representation

In Java, every char has an equivalent int value between 0 and 255. For example:

public class Client {
 public static void main(String[] args) {
 char c1 = 'a';
 char c2 = 'z';
 System.out.println("'" + c1 + "' has an int value of " + ((int) c1));
 System.out.println("'" + c2 + "' has an int value of " + ((int) c2));
 }
}

In this assignment, we will go a step further: computers actually see integers as binary (1's and 0's).
Binary is a lot like the normal numbers we use, except it’s based around 2 instead of 10. For example,
“1204” is written that way, because

1204 = 1 ⋅ 10 +3 2 ⋅ 10 +2 0 ⋅ 10 +1 4 ⋅ 100

Similarly, because

97 = 0 ⋅ 2 +7 1 ⋅ 2 +6 1 ⋅ 2 +5 0 ⋅ 2 +4 0 ⋅ 2 +3 0 ⋅ 2 +2 0 ⋅ 2 +1 1 ⋅ 20

97 is "01100001" in binary! In fact, all char 's can be written using exactly 8 binary digits (also known
as bits). This encoding, which is used pretty universally by computers, is called ASCII.

Huffman Encoding

Huffman encoding is an algorithm devised by David A. Huffman of MIT in 1952 for compressing data
to make a file occupy a smaller amount of space. Unbelievably, this algorithm is still used today in a
variety of very important areas. For example, mp3s and jpgs both use Huffman Coding. The general
idea behind Huffman Coding is the following: What if we used fewer than 8 bits for characters
that are more common?

Consider the following (simple) example. Imagine we have the following data in a text file:

bbbbaa
cccaaa
ddaa

How many bits would it take to store with ASCII Coding?

First, we find the ASCII code for each letter:

a → 01100001

b → 01100010

c → 01100011

d → 01100100

Since each line has 80 letters, and each letter code is 8 bits, the number of bits required is:

80 ⋅ 8 ⋅ 4 = 2560

How many bits would it take to store with Huffman Coding?

Since a has the highest frequency, we use a short code for it, then we use the next (longest) short
code for b , etc:

a → 1

b → 00

c → 011

d → 010

This data has 229 a ’s, 4 b ’s, 3 c ’s, and 2 d ’s. Since we need one bit for a , two for b , and three for
c and d , the total count of bits is:

229 ⋅ 1 + 4 ⋅ 2 + 3 ⋅ 3 + 2 ⋅ 3 = 255

Whoa! By changing the coding, we compressed the data by a factor of 10!

Learning Objectives �
By completing this assignment, students will demonstrate their ability to:

Implement a well-designed Java class to meet a given specification.

Define data structures to represent compound and complex data

Write a functionally correct Java class to represent a binary tree.

Implement the Comparable interface.

Write classes that are readable and maintainable, and that conform to provided guidelines for
style, implementation, and performance.

Produce clear and effective documentation to improve comprehension and maintainability of
programs, methods, and classes.

Required Class
In this assignment, you will create a class called HuffmanCode to be used in compression of data. You
are provided with a client program, HuffmanCompressor.java , that handles user interaction and calls
your HuffmanCode methods to compress and decompress a given file.

Your HuffmanCode class must include the following methods:

public HuffmanCode(int[] frequencies)

This constructor should initialize a new HuffmanCode object using the algorithm described
above for building a Huffman code from an array of frequencies. frequencies is an array of
frequencies where frequences[i] is the count of the character with ASCII value i .

Make sure to use a PriorityQueue to build the Huffman tree.

If there exists a character with a frequency <= 0, the character should not be included in the
HuffmanCode object.

public HuffmanCode(Scanner input)

This constructor should initialize a new HuffmanCode object by reading in a previously
constructed code from a .code file. You may assume the Scanner is not null and always
contains data encoded in legal, valid standard format (see below).

public void save(PrintStream output)

This method should store the current Huffman Code to the given output stream in the standard
format (see below).

public void translate(BitInputStream input, PrintStream output)

This method should read individual bits from the input stream and write the corresponding
characters to the output. It should stop reading when the BitInputStream is empty. You may
assume that the input stream contains a legal encoding of characters for this tree’s Huffman
Code. See below for the methods in the BitInputStream class.

HuffmanNode

Your HuffmanCode class must also include a class called HuffmanNode as a private static inner
class of HuffmanCode (recall Commit in Repository from Mini-Git and QuizTreeNode in QuizTree
from BrettFeed). The contents of this class are up to you, but in particular, you must meet the
following requirements:

Your HuffmanNode class must implement the Comparable<E> interface, using frequencies to
order nodes.

The fields of the HuffmanNode class must be public .

All data fields should be declared final as well. This does not include fields representing
the children of a node.

BitInputStream

The provided BitInputStream class reads data bit by bit. This will be useful for the translate
method in HuffmanCode . The interface for BitInputStream works very much like a Scanner and
should be used similarly. BitInputStream has the following methods:

public int nextBit()

This method returns the next bit in the input stream. If there is no such bit, then it throws a
NoSuchElementException .

public boolean hasNextBit()

This method returns true if the input stream has at least one more bit, and false otherwise.

.code File Format
The .code files that are both created by the save method and read by the Scanner constructor will
follow the same format. These files will contain a pair of lines to represent each character in the
Huffman code. The first line in each pair will contain the ASCII code of the character, and the second
line will contain the Huffman encoding for that character.

For example, consider the following sample file (simple-spec-example.code):

98
0
99
100
32
101
97
11

This file represents a Huffman code in which the character 'b' (ASCII code 98) has the encoding 0 ,
'c' (ASCII code 99) has the encoding 100 , ' ' (ASCII code 32) has the encoding 101, and 'a'
(ASCII code 97) has the encoding 11.

HINT: You can get the ASCII code of a char by casting the value to an int .

Creative Aspect (secretmessage.short and

secretmessage.code)
Along with your program you should turn in files named secretmessage.short and
secretmessage.code that represent a “secret” compressed message from you to your TA and its
code file. The message can be anything you want, as long as it is not offensive. Your TA will
decompress your message with your tree and read it while grading.

You can create a file called secretmessage.txt in the Ed editor and use your Huffman compression
algorithm to create secretmessage.short and secretmessage.code . You should delete
secretmessage.txt afterwards as that file contains your "secret" message.

[OLD] Building a Huffman Code �

In the previous slide, we magically arrived at the special binary sequences to be used as codes. In this
section, we explain the algorithm to create these special binary sequences. Throughout this section,
we will use the following text (which can be found in simple-spec-example.txt):

aba ab cabbb

Step 1: Count the Frequencies of the Characters

The file simple-spec-example.txt has the characters 'a' , 'b' , 'c' , and ' ' . Counting up the
frequencies, we get the following:

' ' → 2

'a' → 4

'b' → 5

'c' → 1

Step 2: Create a Priority Queue Ordered By Frequency

Since our ultimate goal is to create a code based on frequencies, we need to use a data structure that
helps us keep track of the order of the letters based on frequencies. We will use a priority queue for
this. A priority queue is a queue that is ordered by priorities (in this case frequencies) instead of FIFO
order. In other words, we can ask the priority queue to insert a new element (add(element)) and we
can ask it to remove the highest priority element (remove()). We will use the PriorityQueue<E>
class in Java for the implementation of priority queues, but we will still use the Queue<E> interface
for variables. For example, to create a priority queue of integers: Queue<Integer> pq = new
PriorityQueue<>();

For our Huffman Code, we want to remove the node with lowest frequency first. (Intuitively, the
reason is that the things we remove first will end up having the longest codes). We begin by creating a
node for each letter in our text:

In Java, if you print out a priority queue, the elements will not appear in priority order. This is expected
behavior, and can’t be easily changed.

Step 3: Combine the Nodes Until Only One is Left

Now that we have a priority queue of the nodes, we want to put them together into a tree. To do this,
we repeatedly remove the smallest two (the ones at the front of the priority queue) and create a new
node with them as children. (The new node does not have a character associated with it.) Note that
the priority queue is arbitrary in how it breaks ties; you should just take nodes in the order the
priority queue provides them.

Step 3a: Remove Two Smallest

First, remove the smallest two nodes from the priority queue:

Step 3b: Combine Them Together

 Then, create a new node. The frequency is the sum of two nodes:

Step 3c: Add Back To Priority Queue

Now that we have a “new node”, add it back to the priority queue:

We repeat this process until there is only one node left in the priority queue. Here are the remaining
steps (each time, we remove the two smallest frequencies, combine them, and put the result back):

Now that we only have one node left, we can use the tree we constructed to create the Huffman
codes!

Step 4: Read Off the Huffman Codes

At this point, the frequencies of the letters have already been taken into account; so, we no longer
even look at them. Thus, the tree we’ve constructed looks like the following:

To figure out the Huffman code for a letter, we traverse the tree from the root to the node with the
letter in it. When we go left, we print a 0 and if we go right, we print a 1. For example, 'c' would be
100, because we go right, then left, then left to reach it.

Just like in BrettFeed, we will output the tree in “standard format”. Notice that the only actual
information is in the leaves of the tree. So, the code file, which you can get by asking the main to
“make a code”, will consist of line pairs: the first line will be the ASCII value of the character in the leaf
and the second line will be the Huffman code for that character. For example, the output of the tree
we just constructed would look like the above. The leaves should appear in the order of a pre-order
traversal.

[OLD] Huffman Compression and Decompression �

Now that we know how to construct a Huffman code, we are ready to understand the Huffman
compression and decompression algorithms. Here is an overview of how they work:

Compression Algorithm
1. HuffmanCompressor generates the frequencies in a given file.

2. HuffmanCode creates the Huffman code from the frequencies.

3. HuffmanCode writes out the Huffman codes to a .code file.

4. HuffmanCompressor writes a .short file.

Decompression Algorithm
1. HuffmanCode reads in a .code file in standard format.

2. HuffmanCode writes out a .new file.

Client Program
HuffmanCompressor is a client program that we will provide to you. In addition to handling user
interactions, it implements some of the steps of the compression and decompression algorithms that

Expand

Expand

Expand

Expand

we are not asking you to deal with. Specifically, HuffmanCompressor handles:

computing character frequencies for a given input file (these frequencies are passed to the first
HuffmanCode constructor above)

compressing a text file using a given Huffman tree

producing a BitInputStream from a given compressed input file (this stream is passed to the
translate method)

You do not need to implement any of the above behavior. You only need to implement the behavior
and methods described in the Specification slide. You may click "Expand" below to see a sample
execution of each step (user input is bold and underlined).

Making a Huffman Code (produces .code file)

Compressing a File (produces .short file)

Decompressing a File (produces .new file)

Compressing and then Decompressing a File (produces .short and .new file)

[OLD] Implementation Guidelines

Your program should exactly reproduce the format and general behavior demonstrated in the Ed
tests. Note that this assignment has two mostly separate parts: creating a Huffman code and
decompressing a message using your Huffman code. Of the four methods to implement, two are
relevant to each part.

1 � Creating a Huffman Code
You will write methods to (1) create a Huffman code from an array of frequencies and (2) write out
the code you’ve created in standard format.

Frequency Array Constructor

You should use the algorithm described in the “Building a Huffman Code” slide to implement this
constructor. You will need to use PriorityQueue<E> in the java.util package.

The only difference between a priority queue and a standard queue is that it uses the natural ordering
of the objects to decide which object to dequeue first, with objects considered “less” returned first.
You will be putting subtrees into your priority queue, which means you’ll be adding values of type
HuffmanNode .

This means that your HuffmanNode class will have to implement the Comparable<E> interface. It
should use the frequency of the subtree to determine its ordering relative to other subtrees, with
lower frequencies considered “less” than higher frequencies. If two frequencies are equal, the nodes
are too.

Remember that, in order to make our code more flexible we should be declaring variables with their
interface types when possible. This means you should define your PriorityQueue variables with the
Queue interface.

The Huffman solution is not unique. You can obtain any one of several different equivalent trees
depending upon how certain decisions are made. However, if you implement it as we have specified,
then you should get exactly the same tree for any particular implementation of PriorityQueue .
Make sure that you use the built-in PriorityQueue class and that when you are combining pairs of
values taken from the priority queue, you make the first value removed from the queue the left
subtree and you make the second value removed the right subtree.

2 � Decompressing A Message
You will write methods to (1) read in a .code file created with save() and (2) translate a compressed

file back into a decompressed file.

Scanner Constructor

This constructor will be given a Scanner that contains data produced by save() . In other words, the
input for this constructor is the output you produced into a .code file. The goal of this constructor is
to re-create the Huffman tree from your output. Note that the frequencies are irrelevant for this part,
because the tree has already been constructed; so, you should set all the frequencies to some
standard value (such as 0 or -1) when creating HuffmanNodes in this constructor.

Remember that the standard code file format is a series of pairs of lines where the first line has an
integer representing the character’s ASCII value and the second line has the code to use for that
character. You might be tempted to call nextInt() to read the integer and nextLine() to read the
code, but remember that mixing token-based reading and line-based reading is not simple. Here is an
alternative that uses a method called parseInt in the Integer class that allows you to use two
successive calls on nextLine() :

int asciiValue = Integer.parseInt(input.nextLine());
String code = input.nextLine();

Take a look at the Huffman Encoding in-class slides for a walk-through of this algorithm (particularly
starting at page 55).

translate

This method takes in a BitInputStream representing a previously compressed message and outputs
the original decompressed message. BitInputStream can be used in a very similar way to a
Scanner ; see the Specification slide.

This method reads sequences of bits that represent encoded characters to figure out what the original
characters must have been. The algorithm works as follows:

Begin at the top of the tree

For each bit read in from the BitInputStream , if it’s a 0, go left, and if it’s a 1, go right.

Eventually, we will hit a leaf node. Once we do, write out the integer code for that character to
the output using the following PrintStream method:

public void write(int b)

Then, go back to the top of the tree, and do the process over again.

You will have to be careful if you use recursion in your decode method. Java has a limit on the stack
depth you can use. For a large message, there are hundreds of thousands of characters to decode. It
would not be appropriate to write code that requires a stack that is hundreds of thousands of levels
deep. You might be forced to write some or all of this using loops to make sure that you don’t exceed

Expand

the stack depth.

Translate Example

� Code Quality
As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements:

x = change(x) :

An important concept introduced in lecture was called x = change(x). This idea is related
to proper design of recursive methods that manipulate the structure of a binary tree. You
should follow this pattern where necessary when modifying your trees.

Avoid redundancy:

Create “helper” method(s) to capture repeated code. As long as all extra methods you
create are private (so outside code cannot call them), you can have additional methods in
your class beyond those specified here.

If you find that multiple methods in your class do similar things, you should create helper
method(s) to capture the common code.

Data Fields:

Properly encapsulate your objects by making data fields in your HuffmanCode class
private. (Fields in your HuffmanNode class should be public following the pattern from
class.)

Avoid unnecessary fields; use fields to store important data of your objects but not to
store temporary values only used in one place.

Fields should always be initialized inside a constructor or method, never at declaration.

