
Hashing



Exam Logistics

• Monday, June 3, 12:30pm, KNE130 and KNE110
• In advance of the exam we will release a seating chart. Please 

show up to your assigned room and sit in your assigned seat.
• Check Ed if you need a left-handed desk!

• Materials allowed:
• The exam page (includes a reference sheet)
• Your own reference sheet (1 page front and back, written or typed)
• A writing implement

• Not allowed:
• Anything electronic (laptop, phone, tablet, earbuds, etc.)



List Data Structures

• Goal:
• Store a sequence of things

• Sequences have order (indexing, next)
• Sequences can have repeats

• Operations:
• Add

• To beginning
• To end
• At an index

• Remove
• Get

• At an index



Linked Lists vs Array Lists
Operation ArrayList LinkedList

add(index, value) For each item at or after index, 
shift it to the right by one.
Put value at index
Time:

Create a new node whose data field is value
If index==0, newNode.next=front, 
front=newNode
Otherwise follow .next index-1 times, 
newNode.next=curr.next, curr.next=newNode
Time:

remove(index) For each item at or after index, 
shift it to the left by one
Time:

If index==0, front=front.next
Otherwise follow .next index-1 times, 
curr.next = curr.next.next
Time:

remove(value) For each index, check if the 
item matches value. If so, shift 
everything after it to the left.
Time:

Follow .next until curr.next.data matches 
value.
curr.next = curr.next.next
Time:

get(index) Return the thing at index of the 
array
Time:

Follow .next index times, return curr.data
Time:



Set Structures

• Goal:
• Store a Collection with no order, no duplicates

• Operations:
• Add
• Remove
• Contains

• Ideas:



ReallyBigArray

• Have a really big array of booleans
• Every possible int gets its own index
• Length is Integer.MAX_VALUE
• If bigArray[x] is true, then x is in the set

• What’s wrong with this?



Better Ideas

• Use Binary Search Trees!
• When calling add, remove, contains we only need to go left or right at 

each level
• Each level you cut the number of items in half! (ideally…)

• Use HashSets!
• Use a small array to store items
• Use a hash function to select an index in that small array

• Selected index should be hard to predict so that the small array behaves similarly to 
the big array

• If two different items select the same index, deal with it…


	Slide 1: Hashing
	Slide 2: Exam Logistics
	Slide 3: List Data Structures
	Slide 4: Linked Lists vs Array Lists
	Slide 5: Set Structures
	Slide 6: ReallyBigArray
	Slide 7: Better Ideas

