
Huffman Encoding

1

Priority Queue

• Like a queue, but items removed in sorted order rather than in the
order added
• “sorted” according to comparable interface

Method Behavior

PriorityQueue<E>() Constructs a priority queue containing objects of type E (must implement
Comparable interface)

add(E value) Inserts the value into the priority queue

peek() Returns the “smallest” item in the priority queue

remove() Returns and removes the “smallest” item from the priority queue

size() Returns the number of items in the priority queue

2

Overview: Encoding
• Computers store all values as 1s and 0s

• 1s and 0s represent numbers

• Characters each have a number used to “encode” it
• “Default” encoding is ASCII

• Uses 8 bits to represent each character
• Number between 0 and 255

Char Int Binary

a 97 01100001

b 98 01100010

c 99 01100011

e 101 01100101

g 103 01100111

w 119 01110111

‘ ‘ (space) 32 00100000 3

Encoding/Decoding with ASCII

• Encoding:
• Replace each character of text with its binary representation

• This includes all punctuation, whitespace, etc.

• Decoding:
• Take the binary encoding and break it up into chunks of 8 bits
• Use the encoding table to find which letter each chunk represents

4

Encoding Example

• wigg

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Char Int Binary

a 97 01100001

b 98 01100010

e 101 01100101

g 103 01100111

i 105 01101001

w 119 01110111

‘ ‘ (space) 32 00100000 5

Decoding Example

• 01110111011010010110011101100111

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Char Int Binary

a 97 01100001

b 98 01100010

e 101 01100101

g 103 01100111

i 105 01101001

w 119 01110111

‘ ‘ (space) 32 00100000 6

Fixed Width vs Variable Width

• ASCII is an example of fixed width encoding
• Each character’s encoding is the same size (8 bits for ASCII)

• Huffman is an example of variable width encoding
• Different characters may have different length encodings
• Why do this? Compression!

• Some characters are more common than others, give the more common characters
shorter code words (even if rare characters get longer ones)

• This makes encoding/decoding tricky…

7

A “Bad” Variable Length Encoding

• 1010
• Goal: pick encodings to make this unambiguous

Character Encoding

a 01

e 1

t 0

r 010

n 10

8

Huffman Coding Strategy

• Use variable length codes to take up less space
• Don’t have codes for unused characters
• Give frequent characters shorter codes
• Give infrequent characters longer codes

• Select code words to make decoding unambiguous
• You can tell when one char ends and the next begins
• We will use a binary tree!

9

Huffman Coding

g e

0 1

l i

0 1

q u

0 1

k p

0 1

0 1

n s

0 1

0 1

w

r y

0 1

a d

0 1

0 1

0 1

0 1

0 1

0 1
wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Characters are leaves in the tree
0 = go left, 1 = go right
Path to character is its encoding

To encode “wigg”:
• Find each character in the tree
• Replace character with the path to

that node
• Result: 00010111010

10

Huffman Coding

g e

0 1

l i

0 1

q u

0 1

k p

0 1

0 1

n s

0 1

0 1

w

r y

0 1

a d

0 1

0 1

0 1

0 1

0 1

0 1
wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green
Characters are leaves in the tree
0 = go left, 1 = go right
Path to character is its encoding

To decode “00010111010”:
• Start from root of the tree
• Read bits one at a time, use them as

“directions”
• When you reach a leaf, replace bits

with that character, return to the
root of the tree

• Result: “wigg”

11

P3 Process

• Encoding:
• Generate the Huffman tree for the text given (algorithm soon)
• Store the tree in a .code file
• Encode the text using that .code file

• Decoding:
• Rebuild the stored tree (trickiest part of assignment)
• Read the encoding one character at a time to navigate the tree
• Print out a character each time you hit a leaf node

12

Encoding (Generating Huffman Tree)

• Step 1: Count occurrences of each character
• We do this for you!

• We give you an array where each index is an ascii character, the value is the number
of occurrences

2 0 0 2 13 0 14 0… …
0 1 2 3 97 98 99 100 101 102 103 104 254 255… …

a b c d e f g h

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

13

Encoding (Generating Huffman Tree)

• Step 1: Count occurrences of each character
• Step 2: Make a HuffmanTreeNode per character

• You will write this class
• It must implement the comparable interface
• Nodes should be compared by the character frequency

2 0 0 2 13 0 14 0… …
0 1 2 3 97 98 99 100 101 102 103 104 254 255… …

a b c d e f g h

Char: ‘a’
Freq: 2

Char: ‘d’
Freq: 2

Char: ‘e’
Freq: 13

Char: ‘g’
Freq: 14

14

Encoding (Generating Huffman Tree)

• Step 1: Count occurrences of each character
• Step 2: Make a HuffmanTreeNode per character
• Step 3: Build the Tree (algorithm coming!)

Char: ‘a’
Freq: 2

Char: ‘d’
Freq: 2

Char: ‘e’
Freq: 13

Char: ‘g’
Freq: 14

Char: ‘a’
Freq: 2

Char: ‘d’
Freq: 2

Char:
Freq: 4

Char: ‘e’
Freq: 13

Char:
Freq: 17

Char:
Freq: 31

Char: ‘g’
Freq: 14

15

Encoding (Storing Huffman Tree)

• Step 1: Count occurrences of each character
• Step 2: Make a HuffmanTreeNode per character
• Step 3: Build the Tree (algorithm coming!)
• Step 4: Save per-character encoding to .code file

Char: ‘a’
Freq: 2

Char: ‘d’
Freq: 2

Char:
Freq: 4

Char: ‘e’
Freq: 13

Char:
Freq: 17

Char:
Freq: 31

Char: ‘g’
Freq: 14

97
000
100
001
101
01
103
1

Ascii value
Path

Ascii value
Path

Ascii value
Path

Ascii value
Path

16

Encoding (Use the Codes)

• Step 1: Count occurrences of each character
• Step 2: Make a HuffmanTreeNode per character
• Step 3: Build the Tree (algorithm coming!)
• Step 4: Save per-character encoding to .code file
• Step 5: Replace characters with their codes

97
000
100
001
101
01
103
1

a

d

e

g

“addage” becomes
000100100000101

17

Step 3: Build the Tree

• From step 2 we have a HuffmanTreeNode per character
• Put all nodes into a priority queue, ordered by frequency

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Char: g
Freq:14

Char: e
Freq:14

Char: l
Freq:9

Char: i
Freq:8

Char:w
Freq: 6

Char: n
Freq: 3

Char: s
Freq: 3

Char: a
Freq: 2

Char: d
Freq: 2

Char: r
Freq: 2

Char: y
Freq: 2

18

Step 3: Build the Tree

• While there is more than 1 node in the priority queue:
• Remove the least-frequent pair
• Make them children of a new node
• Make new node’s frequency their sum
• Add new node to the priority queue

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Char: g
Freq:14

Char: e
Freq:14

Char: l
Freq:9

Char: i
Freq:8

Char:w
Freq: 6

Char: n
Freq: 3

Char: s
Freq: 3

Char: a
Freq: 2

Char: d
Freq: 2

Char: r
Freq: 2

Char: y
Freq: 2

19

Step 3: Build the Tree

• While there is more than 1 node in the priority queue:
• Remove the least-frequent pair
• Make them children of a new node
• Make new node’s frequency their sum
• Add new node to the priority queue

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Char: r
Freq: 2

Char: y
Freq: 2

Char:
Freq:

4

Char: g
Freq:14

Char: e
Freq:14

Char: l
Freq:9

Char: i
Freq:8

Char:w
Freq: 6

Char: n
Freq: 3

Char: s
Freq: 3

Char: a
Freq: 2

Char: d
Freq: 2

20

Step 3: Build the Tree

• While there is more than 1 node in the priority queue:
• Remove the least-frequent pair
• Make them children of a new node
• Make new node’s frequency their sum
• Add new node to the priority queue

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Char: r
Freq: 2

Char: y
Freq: 2

Char:
Freq:

4

Char: g
Freq:14

Char: e
Freq:14

Char: l
Freq:9

Char: i
Freq:8

Char:w
Freq: 6

Char: n
Freq: 3

Char: s
Freq: 3

Char: a
Freq: 2

Char: d
Freq: 2

Char:
Freq:

4

21

Step 3: Build the Tree

• While there is more than 1 node in the priority queue:
• Remove the least-frequent pair
• Make them children of a new node
• Make new node’s frequency their sum
• Add new node to the priority queue

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Char: r
Freq: 2

Char: y
Freq: 2

Char:
Freq:

4

Char: g
Freq:14

Char: e
Freq:14

Char: l
Freq:9

Char: i
Freq:8

Char:w
Freq: 6

Char: a
Freq: 2

Char: d
Freq: 2

Char:
Freq:

4

Char: n
Freq: 3

Char: s
Freq: 3

Char:
Freq:

6

22

Step 3: Build the Tree

• While there is more than 1 node in the priority queue:
• Remove the least-frequent pair
• Make them children of a new node
• Make new node’s frequency their sum
• Add new node to the priority queue

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Char: g
Freq:14

Char: e
Freq:14

Char: l
Freq:9

Char: i
Freq:8

Char:w
Freq: 6

Char: n
Freq: 3

Char: s
Freq: 3

Char:
Freq:

6

Char
: r

Freq:
2

Char
: y

Freq:
2

Char:
Freq:

4

Char
: a

Freq:
2

Char
: d

Freq:
2

Char:
Freq:

4

Char:
Freq:

8

23

Step 3: Build the Tree

• While there is more than 1 node in the priority queue:
• Remove the least-frequent pair
• Make them children of a new node
• Make new node’s frequency their sum
• Add new node to the priority queue

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Char: g
Freq:14

Char: e
Freq:14

Char: l
Freq:9

Char: i
Freq:8

Char
: r

Freq:
2

Char
: y

Freq:
2

Char:
Freq:

4

Char
: a

Freq:
2

Char
: d

Freq:
2

Char:
Freq:

4

Char:
Freq:

8

Char:w
Freq: 6

Char
: n

Freq:
3

Char
: s

Freq:
3

Char:
Freq:

6

Char:
Freq:

12

24

Step 3: Build the Tree

Char: g
Freq:14

Char: e
Freq:14

Char: l
Freq:9

Char: i
Freq:8

Char
: r

Freq:
2

Char
: y

Freq:
2

Char:
Freq:

4

Char
: a

Freq:
2

Char
: d

Freq:
2

Char:
Freq:

4

Char:
Freq:

8

Char:w
Freq: 6

Char
: n

Freq:
3

Char
: s

Freq:
3

Char:
Freq:

6

Char:
Freq:

12

Char:
Freq:

16

Char:
Freq:

21

Char:
Freq:

28

Char:
Freq:

37

Char:
Freq:

65

25

Decoding (Rebuild the Tree)

• From Encoding we have the .code file
• Use the .code file to build the tree

• Use each path at a time to “branch”

97
000
100
001
101
01
103
1

Ascii value
Path

Ascii value
Path

Ascii value
Path

Ascii value
Path Char: ‘a’

Freq:

Char:
Freq:

Char:
Freq:

Char:
Freq:

26

Decoding (Rebuild the Tree)

• From Encoding we have the .code file
• Use the .code file to build the tree

• Use each path at a time to “branch”

97
000
100
001
101
01
103
1

Ascii value
Path

Ascii value
Path

Ascii value
Path

Ascii value
Path Char: ‘a’

Freq:
Char: ‘d’

Freq:

Char:
Freq:

Char:
Freq:

Char:
Freq:

27

Decoding (Rebuild the Tree)

• From Encoding we have the .code file
• Use the .code file to build the tree

• Use each path at a time to “branch”

97
000
100
001
101
01
103
1

Ascii value
Path

Ascii value
Path

Ascii value
Path

Ascii value
Path Char: ‘a’

Freq:
Char: ‘d’

Freq:

Char:
Freq:

Char: ‘e’
Freq:

Char:
Freq:

Char:
Freq:

28

Decoding (Rebuild the Tree)

• From Encoding we have the .code file
• Use the .code file to build the tree

• Use each path at a time to “branch”

97
000
100
001
101
01
103
1

Ascii value
Path

Ascii value
Path

Ascii value
Path

Ascii value
Path Char: ‘a’

Freq:
Char: ‘d’

Freq:

Char:
Freq:

Char: ‘e’
Freq:

Char:
Freq:

Char:
Freq:

Char: ‘g’
Freq:

29

BitInputStream Class

• Used to read 1 bit at a time
• Works a lot like Scanner

Method Behavior

BitInputStream(String file) Creates a stream of bits from file

hasNextBit() Returns true if bits remain in the stream

nextBit() Reads and returns the next bit in the stream

30

Summary

• Part A: Compression
• public HuffmanCode(int[] counts)

• Slides 14-15
• Slides 18-25

• public void save(PrintStream out)
• Slides 16-17

• Part B: Decompression
• public HuffmanCode(Scanner input)

• Slides 26-29
• public void translate(BitInputStream in, PrintStream out)

• Slide 11

31

	Slide 1: Huffman Encoding
	Slide 2: Priority Queue
	Slide 3: Overview: Encoding
	Slide 4: Encoding/Decoding with ASCII
	Slide 5: Encoding Example
	Slide 6: Decoding Example
	Slide 7: Fixed Width vs Variable Width
	Slide 8: A “Bad” Variable Length Encoding
	Slide 9: Huffman Coding Strategy
	Slide 10: Huffman Coding
	Slide 11: Huffman Coding
	Slide 12: P3 Process
	Slide 13: Encoding (Generating Huffman Tree)
	Slide 14: Encoding (Generating Huffman Tree)
	Slide 15: Encoding (Generating Huffman Tree)
	Slide 16: Encoding (Storing Huffman Tree)
	Slide 17: Encoding (Use the Codes)
	Slide 18: Step 3: Build the Tree
	Slide 19: Step 3: Build the Tree
	Slide 20: Step 3: Build the Tree
	Slide 21: Step 3: Build the Tree
	Slide 22: Step 3: Build the Tree
	Slide 23: Step 3: Build the Tree
	Slide 24: Step 3: Build the Tree
	Slide 25: Step 3: Build the Tree
	Slide 26: Decoding (Rebuild the Tree)
	Slide 27: Decoding (Rebuild the Tree)
	Slide 28: Decoding (Rebuild the Tree)
	Slide 29: Decoding (Rebuild the Tree)
	Slide 30: BitInputStream Class
	Slide 31: Summary

