
Linked Lists and Recursion

Linked Lists are defined recursively!

• A linked is is either:
• Empty (null reference)

• A ListNode with a reference to a linked list

front

Reading a Linked List (Recursively)

• Public-private pair:
• Public method:

• Call private method with argument front

• Private method (recursive):
• If the current node is null, you’ve reached the end!

• Just return (base case)
• If the current node is not null, there’s more list!

• “Read” the current node
• Keep going! Recursive call with argument curr.next

public int readThing(){
return readThing(front);

}

private int readThing(ListNode curr){
if (curr == null){

return 0;
} else{

return 1 + readThing(curr.next);
}

}

Modifying a Linked List (Recursively)

• Public method:
• Call private method with argument front
• Assign return value to front

• Private method (recursive):
• If the current node is null, you’ve reached the end!

• End/Last case!
• If the current node is not null, there’s more list!

• “modify” at the current node
• Keep going! Recursive call with on curr.next

• Assign return value to proper place

public void changeList(){
 front = changeList(front);
}
private ListNode changeList(ListNode curr){
 // The previous node will link to what we return
 if (curr == null){
 // End/Last case.
 // Do we need to add a node here?
 return new ListNode(0); //if so, return it!
 } else{
 // Middle Case
 // Our jobs:
 // 1) Modify the list at curr (e.g. add a node)
 // 2) Do a recursive call, get link to the node returned
 // 3) return what the previous node should link to
 curr.next = changeList(curr.next);
 return curr;
 }
 }

x = change(x)

• Pattern used to modify a linked data structure
• E.g. linked lists and trees (soon!)

• x is a reference to the first node in the data structure
• change is a method that modifies a data structure, starting from

the node x
• It returns the “new” first thing

Modifying a Linked List (Recursively)

A chain of nodes, already modified, it will
link to what we return

A chain of nodes, not yet modified, we will
link to what this returns

curr

What do we do with curr?
1) Check for base case
2) Modify the “neighborhood” of curr
3) Do a recursive call
4) Link things up
5) Return node previous should link to

A chain of nodes, already modified, it will
link to what we return

A chain of nodes, not yet modified, we will
link to what this returns

curr

public void changeList(){
 front = changeList(front);
}
private ListNode changeList(ListNode curr){
 if (curr == null){
 return new ListNode(0);
 } else{
 curr.next = changeList(curr.next);
 return curr;
 }
 }

removeAll() – data doesn’t match value

A chain of nodes, already modified, it will
link to what we return

A chain of nodes, not yet modified, we will
link to what this returns

curr

removeAll() – data matches value

A chain of nodes, already modified, it will
link to what we return

A chain of nodes, not yet modified, we will
link to what this returns

curr

duplicateEvens()

A chain of nodes, already modified, it will
link to what we return

A chain of nodes, not yet modified, we will
link to what this returns

9

curr

duplicateEvens()

A chain of nodes, already modified, it will
link to what we return

A chain of nodes, not yet modified, we will
link to what this returns

6

curr

	Slide 1: Linked Lists and Recursion
	Slide 2: Linked Lists are defined recursively!
	Slide 3: Reading a Linked List (Recursively)
	Slide 4: Modifying a Linked List (Recursively)
	Slide 5: x = change(x)
	Slide 6: Modifying a Linked List (Recursively)
	Slide 7
	Slide 8: removeAll() – data doesn’t match value
	Slide 9: removeAll() – data matches value
	Slide 10: duplicateEvens()
	Slide 11: duplicateEvens()

