
Why Bother With Inheritance?

Declared Type and Actual Type

Chef headChef = new Chef("Julia Child");Employee headChef = new Chef("Julia Child");

DeclaredType varName = new ActualType(…);

Declared Type: Employee
Actual Type: Chef

Can call methods that makes sense for EVERY Employee
If Chef overrides a method, uses the Chef version

Declared Type: Chef
Actual Type: Chef

Can call methods that makes sense for EVERY Chef
If Chef overrides a method, uses the Chef version

Inheritance and Method Calls
When compiling:

Can we guarantee that the method exists
for the declared type?

Does the declared type or one of its super
classes contain a method of that name?

If not… Compile Error!

Employee headChef = new Chef("Julia Child");
headChef.cookFood(“potatoes”);

Compiling:
Look this way for
cookFood

Declared Type

Object

Employee

Chef Server

ex
te

nd
s

“i
s

a”

Overrides and Method Calls

Object

Employee

Chef Server

ex
te

nd
s

“i
s

a”

When running:

Use the most specific version of the
method call starting from the actual type.

Start from the actual type, then go “up” to
super classes until you find the method.
Run that first-discovered version.

Actual Type

Employee headChef = new Chef("Julia Child");
headChef.getHourlyRate();

Running:
Look this way for
getHourlyRate
Use the first found

Actual Type

Casting and Method Calls

Object

Employee

Chef Server

Compiling:
From cast-to type

Look this way
for cookFood

Running:
From actual type

Look this way
for cast-to type

Employee headChef = new Chef("Julia Child");
((Chef) headChef).cookFood(“potatoes”); When compiling:

Can we guarantee that the method exists
for the Cast-to type?

Does the Cast-to type or one of its super
classes contain a method of that name?

If not… Compile Error!

When Running:

Check that the Cast-to Type is either the
Actual Type, or one of its super classes

Cast-to Type

public class Employee
 public int getHours()
 public int getVacationDays()
 public String toString()

public class HealthcareWorker extends Employee
 public String getHospital()
 public String toString()
 public int getHours()

public class Doctor extends HealthcareWorker
 public void takePulse()
 public void takePulse(String patient)
 public String toString()

public class Surgeon extends Doctor
 public void performSurgery()
 public String toString()

public class PhysicalTherapist extends HealthcareWorker
 public String toString()

public class Lawyer extends Employee
 public void argue()
 public String toString()
 public int getHours()

public class Astronaut extends Employee
 public void takeoff()
 public String toString()
 public int getHours()

public class Employee
 public int getHours()
 public int getVacationDays()
 public String toString()

public class HealthcareWorker extends Employee
 public String getHospital()
 public String toString()
 public int getHours()

public class Doctor extends HealthcareWorker
 public void takePulse()
 public void takePulse(String patient)
 public String toString()

public class Surgeon extends Doctor
 public void performSurgery()
 public String toString()

public class PhysicalTherapist extends HealthcareWorker
 public String toString()

public class Lawyer extends Employee
 public void argue()
 public String toString()
 public int getHours()

public class Astronaut extends Employee
 public void takeoff()
 public String toString()
 public int getHours()

	Slide 1: Why Bother With Inheritance?
	Slide 2: Declared Type and Actual Type
	Slide 3: Inheritance and Method Calls
	Slide 4: Overrides and Method Calls
	Slide 5: Casting and Method Calls
	Slide 6
	Slide 7

