
Creative Project 2: Mondrian Art

Working with Images Tutorial

In the assignment detailed on the following slide, we will use recursion and image manipulation
techniques to create some interesting CG art. The following tutorial was provided in CSE 122 prior to
the image manipulation assignment but has been updated for our purposes, and explains how to
work with images in Java. The information in this tutorial will be helpful for completing this
assignment; we recommend taking a quick look through it even if you remember how to work with
images from 122.

Representing Images

The following section contains links to further resources if you are interested in learning more, but only the
information written on this slide is needed for the assignment.

Before you can manipulate digital images, you need to learn about how they are represented. Don't
worry though, there are only 2 components to learn about - pixels and color!

Pixels

Pixels are the building blocks of digital images. Each pixel can be thought of as a square of a color
that we choose. If we arrange these pixels in a grid, or an array, and choose the color of each one in a
meaningful way, we can produce a digital image! By making these pixels small enough, you will see a
continuous image instead of the individual pixels that compose it.

Color

In order to accurately and easily represent the wide array of colors that we see every day, a simple
way to construct a color using a few base parameters is needed.

RGB

The RGB color model is an additive system in which the red, green, and blue colors of light are added
together in specific intensities, reproducing a huge number of colors. This model is based on the
theory of trichromatic color vision that our eyes use to interpret light, and has been used since the
late 1800s in early color photography.

How RGB works

Expand

By assigning a numeric value to each RGB component of a color, we can easily store color values on a
computer. Most digital colors can be described through a combination of 3 integer values, ranging
from 0 - 255 inclusive, that specify the intensities of the RGB components of said color. For example,
a shade of purple can be described with the values R=106, G=13, B=173 , and a shade of gold can
be described with the values R=255, G=215, B=0 . These values make sense when you think about
them; purple is the result of mixing red and blue, and so you would expect its red and blue RGB
components to be higher than its green. Since yellow is the result of mixing red and green, gold's blue
RGB component is 0, and its red and green are large numbers.

Expand to see colors:

Giving each pixel of an image its own RGB color allows us to represent incredibly complex images.
For each pixel on the image you want to display, all you need to store are the intensities of the RGB
components of the color you want and voila! You have an image!

Modern displays and monitors can directly control the level of the RGB colors displayed within each
pixel, and so our images can now be loaded and displayed directly on most modern computers!

If you would like to play around with RGB colors to see what different combinations of values create,
feel free to use this RGB color picker, or discover a tool for yourself online.

Expand

Image Manipulation in Java
Now that you know the fundamentals of how digital images are made, you can learn how to make
and manipulate them in Java! The first thing to learn is how Java represents colors. To do this a library
aptly named Color is used.

Color

Color is a class provided in the java.awt package that combines code used for creating,
representing and manipulating colors in Java.

The Color class is able to create new colors from their RGB values alone. To do this the following
syntax is used:

Color myColor = new Color(255, 217, 0);

The three int values that we pass to the new Color() call are respectively the R, G, and B
components of the color we are trying to create, in this case a shade of gold. The values that we pass
in must be in the range of 0 - 255 inclusive or an IllegalArgumentException will be thrown.

Because Color is from the java.awt package, when we use it we must remember to add the following
import statement to the top of our program:
 import java.awt.*;

The Color object also allows us to get the individual R, G, and B components of the color it is
representing. Given a Color object myColor created above, you can do this through the following
commands:

int redComponent = myColor.getRed();

Returns the red component of the Color as an int value from 0 - 255 inclusive.

int greenComponent = myColor.getGreen();

Returns the green component of the Color as an int value from 0 - 255 inclusive.

int blueComponent = myColor.getBlue();

Returns the blue component of the Color as an int value from 0 - 255 inclusive.

Using the above information, you can now create any given RGB color in Java. You can also modify
any existing one by retrieving its components and making a new color based on those values.

The Color class also comes with several static fields that we can directly use to represent colors
without using their RGB values. For example, a Color object that represents red can be accessed by
writing Color.RED , or the Color object that represents yellow can be accessed through
Color.YELLOW . A full list of the static fields that you can use can be found here:

Picture

The last fundamental of digital images we need to learn about in Java is pixels and their arrangement.
We will be taking advantage of an external library to help you easily make and manipulate digital
images. This library, named Picture.java , gives us access to a new object, the Picture , that allows
you to represent an image using a 2D array of Color information. Before we break down exactly
how this 2D array works, let's look at the functionality of the Picture class. It is important to note
that for the rest of this assignment, Picture refers to the Java object, and image refers to the digital
image that we are creating.

Creating a Picture

There are 3 useful constructors implemented by Picture . You can use them to either create a
Picture from an existing digital image, from an existing Picture object, or you can create a blank
one with a specified size. Here are the syntax for these means of creation:

Picture myPicture = new Picture("image.jpg");

This syntax lets us pass in the name of an existing image as a String , in this case
"image.jpg" . The resulting Picture is an exact RGB representation of that image. The
image that you pass in must exist in the same directory level as the program you are
writing, similar to the requirements for reading from a file. The following image formats
are supported by this library (.png, .jpg, and .gif).

Picture myPicture = new Picture(500, 300);

This syntax lets us pass in two ints representing the desired width and height of the
image you want to create. The resulting Picture is a blank image of the specified
dimensions. Both width and height must be greater than 0, and an
IllegalArgumentException will be thrown if they are not.

Picture myPicture = new Picture(otherPicture);

This syntax lets us pass another Picture object to make a copy of the original picture
with its own state of pixels.

In this assignment you will primarily be using the second method of creating an image, but feel free
to experiment with creating images from scratch on your own.

Because Picture is from an external library, we must make sure that the Picture.java file is present in the
same directory as the program we are working on. This is done for you on Ed, but make sure to download
Picture.java from Ed and place it in your working directory if you are programming in your own
environment.

Picture Methods

There are three more methods associated with Pictures that you will need to work with digital

images. Given the Picture object myPicture from above, you would use these methods in the
following ways:

myPicture.save(String filename);

This will take the Color data for each pixel from myPicture and save it to the given file
name.

Color[][] pixels = myPicture.getPixels();
Returns a 2D array of Color objects. Each element within the array represents the color
of the corresponding pixel in myPicture . This is used to retrieve the RGB data from an
image so that you can edit it.

myPicture.setPixels(Color[][] newPixels);

Replaces the Color data of the Picture with the data from the passed in array. Each
element in the newPixels array represents the new color of the corresponding pixel in
myPicture .

Using the above information you can now create images and display them on our screen using Java!
With the getPixels() and setPixels() methods you can also retrieve, edit, and replace the Color
data of any image you want! Before showing examples of how to do this, let's talk about the 2D
arrays that you will be using to make your images.

2D Color Array

In order to understand 2D arrays, we often visualize them as an indexed grid. It turns out that this is
pretty much exactly how images are interpreted! Digital images are essentially just a grid (or 2D array)
of pixels, and so it is possible to directly represent an image as an array of pixels. A pixel is essentially
just the color data for a small segment of an image, and so all you need to store for each pixel is its
color. Since colors are represented using the Color library in Java, our image can be directly
represented with a 2D array of Colors ! Written in Java, this is a Color[][] .

In less complex terms; an image can be represented by a grid, where each point in the grid has a
specific color value. When these colors are displayed in grid order, they appear as an image. A 2D
array of Colors can be used to maintain this grid and achieve this effect. For example we show an
example image as a grid of pixels, each one storing its own color RGB value. Now this picture is "low
resolution" since it is 4 pixels by 5 pixels. A real image might have thousands, if not millions of pixels
in it; with them so small it's very hard to see them with the human eye.

In our representation, the top-left pixel of an image lives at the indices (0, 0) . So if our Color[][]
was called pixels then pixels[0][0] refers to this top-left pixel. As the first index increases, that
moves down the image and as the second index increases, that moves to the right. In the picture
above, the following locations have the following indices:

Top-left: pixels[0][0]

Top-right: pixels[0][4]
Bottom-left: pixels[3][0]

Bottom-right: pixels[3][4]

Putting it all together

Using what you've just learned about working with Colors and Pictures in Java, and your previous
knowledge of 2D arrays, you can now create and manipulate your own digital images!

Here is an example program that takes an image, manipulates its RGB values, and then shows the
new image to the user. We will break down how this program works afterwards:

import java.util.*;
import java.awt.*;

public class Main {
 public static void main(String[] args) {
 // Step 1: Load image: Note we have to use a slightly
 // different file name in a reading slide. In your code
 // you can just say "suzzalo.jpg" or whatever the name
 // of that photo is in your directory
 Picture pic = new Picture("/course/files/suzzallo.jpg");
 pic.save("originalSuzzalo.jpg");

 Color[][] pixels = pic.getPixels();

 // Step 2: Change image
 // See below for code
 increaseRed(pixels);

 // Step 3: Set pixels and display Image
 pic.setPixels(pixels);
 pic.save("angrySuzallo.jpg");
 }

 // This method increases the red RGB component of each pixel
 // within the passed in image. Takes the Picture to edit as
 // a parameter.
 public static void increaseRed(Color[][] pixels) {
 for (int i = 0; i < pixels.length; i++) {
 for (int j = 0; j < pixels[i].length; j++) {
 Color originalColor = pixels[i][j];
 int red = originalColor.getRed();
 int green = originalColor.getGreen();
 int blue = originalColor.getBlue();

 Color newColor = new Color(Math.min(red + 100, 255), green, blue);
 pixels[i][j] = newColor;
 }
 }
 }
}

The main method of this program does 3 things.

1. Creates a new Picture by loading an image ("suzzallo.jpg") and retrieves the pixel values
for the image.

2. Calls a method, increaseRed() , on the Color[][] which represents the pixels of the image to
boost the red component of the image's RGB values.

3. Sets the pixels of the Picture to be the new pixels we have edited, then calls .show() on the
Picture after the changes to show the image to the user.

You could also describe the actions of main by saying it loads, then changes, then displays an image.

Your program will mimic this 3 step structure for its main method, although step 2 will be more
complicated.

Changing the Color of a Picture

Let's dig deeper into the increaseRed() method, starting with the method header:

public static void increaseRed(Color[][] pixels) {

Notice that we take a Color[][] as a parameter, and that our return type is void . Remember that
with arrays, changes made to them as a parameter effect them in their original scope too. Because of
this we do not have to return a resultant image from our manipulation methods.

The first thing this method does is use the Color[][] pixels to retrieve the needed pixel
information. This data is given to us as a 2D array of Colors . The nested for loop technique that we
covered in class is used to iterate through the 2D array in order to process the individual pixels.

At each pixel we perform the following steps:

1. Retrieve the Color for the pixel directly from the 2D array. You can do this using typical array
syntax: Color originalColor = pixels[i][j];

2. Retrieve the individual RGB components from the original color, using
originalColor.getRed() , originalColor.getGreen() , and originalColor.getBlue() .

3. Create a new Color object for the pixel using the RGB values you took from the original color
as a basis for your new color. Any manipulations are applied in this step.

Notice the call to Math.min() for the red component of this new Color . Since we are
increasing the red component of each pixel by 100, there could easily be a case where the
resultant value is greater than 255. Since 255 is the largest value for any RGB component, we
cannot increase red beyond this. In order to cap the increase to 255, we can call Math.min(red
+ 100, 255); .

Math.min() works by taking 2 values and returning the smaller one, and so this call will always
return a value less than or equal to 255.

4. Replace the old Color in the 2D array with the new one that you just created. You can do this
using typical array syntax: pixels[i][j] = newColor;

After both for loops have finished running, our image has been fully processed and the control flow
of our program can go back to main . Notice that the main method of the program contains the calls
of pic.getPixels() and pic.setPixels(pixels) . By extracting the pixel data at the start of our
program and applying the changes onto the Picture at the end, we can hold off the expensive
computation of updating our Picture until all changes to the pixels have been made. It might not
seem more efficient now, when we are only applying a single filter to our image, but in the next parts
of this assignment you will be applying many filters onto your image and taking advantage of this

technique will increase the speed of your program significantly.

You could describe the total actions of our program more simply like this:

1. Get the 2D Color array (the pixels) from the Picture

2. For each filter, at each pixel:

1. Get the individual RGB values from the Color
2. Make a new Color based on those values but with the desired manipulations made

3. Replace the old Color in the 2D array with the new one

3. Once you have gone through every pixel with each filter, replace the old 2D Color array in the
Picture with the new one you have just edited.

The next slides describe image manipulation methods and algorithms that you will be implementing.
Remember to refer back to the information above while writing these. You can roughly copy the
structure of the increaseRed() method to do most tasks in this assignment.

Getting Started

Breaking It Down
Similar to C0, we've crafted a series of related subproblems to what the spec is asking you to do that
are simpler and meant to help you build your way up to your final program. This step-by-step
approach is designed to make the learning process more manageable and less daunting. It also
should help makes the process of working with images a bit easier, as this is likely territory that
hasn't been explored deeply in prior courses.

Our Recommendation

We strongly recommend using the sequential subproblem slides. It's a step-by-step journey that
breaks down the complexity into digestible parts that will hopefully make it a smoother learning
experience!

Specification

The next slide is the Specification detailing the requirements the main assignment. The subproblems
may seem unrelated to the final goal, but we promise that they'll help! Each slide will provide details
on how to use your previously working subproblem to help simplify the next level of complexity. We
will build up towards the final Mondrian Art slide, where you will see all your hard work come
together to complete the full assignment!

Specification

(Much of this assignment inspired by Ben Stephenson's 2018 Nifty Assignment.)

Background
In recent years, algorithmic art has become more commonplace, ranging from very simple, largely
randomly generated pieces to sophisticated works created by artificial intelligence programs such as
DALL-E. The artwork created by these systems can be quite impressive, but the process is not without
criticism-- in particular, many worry that the increase in computer-generated art, especially for
commercial purposes (such as logos, advertisements, cover art, etc.) may have a significant impact on
the livelihood of professional artists.

In this assignment, we will attempt to programmatically create images that evoke the style of 20th
century Dutch abstract artist Piet Mondrian, specifically pieces such as Tableau I and Composition A.
While our program will not be particularly intelligent, it will follow certain rules that attempt to
emulate some of the techniques Mondrian used.

Important note: In this assignment, we are in no way intending to claim we can recreate, or even approximate,
the work of artists like Mondrian, nor are we claiming that the images we will create comparable to Mondrian's
works. Rather, the images we will create are simply meant to evoke the style of a subset of Mondrian's work by
focusing on certain elements and techniques.

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Define a solution to a given problem using a recursive approach

Write functionally correct recursive methods

Produce clear and effective documentation to improve comprehension and maintainability of a
class

Write a class that is readable and maintainable, and that conforms to provided guidelines for
style, and implementation

Assignment Details

Program Overview:

You will implement a program to generate random artwork in the style of Mondrian. Your program
will:

Expand

Start with a blank canvas of specified dimensions

Recursively divide the canvas into smaller regions until they reach a minimum size (specified
below)

Color the regions randomly to mimic Mondrian's style.

The specifics of this algorithm should be as follows:

If the region being considered is at least one-fourth the height of the full canvas and at least
one-fourth the width of the full canvas, split it into four smaller regions by choosing one vertical
and one horizontal dividing line at random.

If the region being considered is at least one-fourth the height of the full canvas, split it into two
smaller regions by choosing a horizontal dividing line at random.

If the region being considered is at least one-fourth the width of the full canvas, split it into two
smaller regions by choosing a vertical dividing line at random.

If the region being considered is smaller than one-fourth the height of the full canvas and
smaller than one-fourth the width of the full canvas, do not split the region.

Any time a region is split, the dividing line(s) should be chosen at random to be within the bounds of
the region. You should ensure that dividing lines are chosen such that each resulting subregion is at
least 10 pixels by 10 pixels. In other words, dividing lines should not be chosen too close to the
boundaries of a region.

Once a region is below a certain size, it should be filled in with a color chosen randomly from red,
yellow, cyan, and white. When filling a region, leave a one-pixel border around the edge uncolored --
this will give the appearance of black lines separating the colored regions.

Accessibility Note
We acknowledge that the assignment may not be accessible to those who are visually impaired or colorblind. If
this is a concern, please reach out for additional support by emailing the instructors or making a private post
on the Ed board and we will make alternative arrangements for you.

Example Images

Here are a few examples of the images your program might generate:

It may not be clear from these images, but there is also a black border around the entire canvas. You should
not limit the border to interior edges.

Expand

Expand

Extensions
To earn a grade of E on this assignment, you must implement one of the following extensions:

Random Number of Splits

If a region is large enough to be split in a dimension, instead of always splitting into two smaller
regions on that dimension, split the region into a randomly chosen number of smaller regions,
with a maximum of 4 splits on each dimension. If the region is large enough to be split on both
dimensions, you should choose the number of splits on each dimension separately.

Color Related to Location

Instead of determining the color of a region completely randomly, allow a specific color to be more
likely, but not guaranteed, to occur in a region of the overall canvas.

For example, you might make regions closer to the upper left more likely to be red and regions
closer to the lower right more likely to be blue. This would make most, but not all, of the boxes in
the upper left red, and most boxes in the lower right blue. You could also make regions closer to
the center of the image more likely to be darker and regions closer to the edges more likely to be
lighter. (You should still color each full region a single color.)

For this option, you may want to use the Color constructors rather than simply relying on the constants.
See the "Working with Images" slide for more information.

Expand

Random Fill Shape

If a region is not large enough to be split, instead of always filling the entire region as a rectangle,
randomly choose among several shapes to fill in that region. You may choose the specific shapes
that will be possible, but there should be a least 2 such shapes (of which a rectangle may be one).

Custom Extension

If you would like, you may propose a different extension of your choice. Your proposed extension
must be roughly similar in complexity to the above options and must materially change the resulting
art. If you would like to propose a custom extension, you must post it in this Ed thread and receive
approval.

Implementation Requirements

Required Methods

You must implement the following two methods in the provided Mondrian class in your assignment:

public void paintBasicMondrian(Color[][] pixels)

Fill pixels with Color objects (using the java.awt.Color class) according to the basic
algorithm specified above.

public void paintComplexMondrian(Color[][] pixels)

Fill pixels with Color objects (using the java.awt.Color class) based on your chosen
extension.

Your methods should work properly when called with the provided client program in Client.java .
You are welcome to modify the client for your own testing if you would like, but your methods must
function correctly with the provided code.

Your final submission must also contain two files in your workspace named "basic.png" and
"extension.png" that correspond to your basic and complex implementations on a canvas size of your
choosing. You can use the Run button to generate your image, download it, and then re-upload it to
your workspace or you can use the Terminal tab which will autosave the file to your workspace
when it's finished running.

java.awt.Color

A detailed description of this class and its usage is given in the "Working with Images Tutorial" on the previous

slide, but the component you will need for this assignment is detailed here.

You can directly access Color objects to represent the colors needed to create the assignment
through the static fields of the Color class. For example, a Color object that represents red can
be accessed by writing Color.RED , or the Color object that represents yellow can be accessed
through Color.YELLOW .

Color shapeColor = Color.RED;

The four colors that you will use for the basic part of this assignment (paintBasicMondiran) can be
accessed by writing:

Color.RED , Color.YELLOW , Color.CYAN , Color.WHITE

You may choose to use additional colors for your extension (paintComplexMondrian).

Recursion

To earn a grade higher than N on this assignment, your algorithms must be implemented
recursively. You will want to utilize the public-private pair technique discussed in class. You are free
to create any helper methods you like, but the core of your algorithm (specifically, the dividing and
filling of regions) must be recursive.

Since recursion with public-private pairs often leads to many parameters that need to be tracked and
updated, we would encourage you think of solutions that factor some logic regarding randomly
dividing regions into a private helper method or private helper class. Note that this is not a
requirement that will be graded on, but rather a recommendation to make the assignment easier.

Testing
For this assignment, you are not required to write any tests, JUnit or otherwise.

Assignment Requirements
For this assignment, you should follow the Code Quality guide when writing your code to ensure it is
readable and maintainable. In particular, you should focus on the following requirements:

Avoid making objects you don't need. Look for opportunities to construct objects and reuse
them elsewhere. This can be tricky to spot, but in particular you should review your code
statements that instantiate new objects or call other methods that do so.

Look out for including additional base or recursive cases when writing recursive code. While
multiple calls may be necessary, you should avoid having more cases than you need. Try to see
if there are any redundant checks that can be combined!

Make sure that all parameters within a method are used and necessary.

You should comment your code following the Commenting Guide. You should write comments
with basic info (a header comment at the top of your file), a class comment for your Mondrian
class, and a comment for every method.

Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.

All methods present in your class that are not listed in the specification must be private.

Fill Region

C2_Fill_Region.zip

WARNING: This slide is NOT graded

Download Starter Code:

The first step of working our way up to a complete Mondrian solution is meant to get you used to
working with images, as they haven't been strongly introduced before. In this slide, you'll implement
fill, a method which fills in a provided rectangular region with the color white within the image. Below
is the full specification:

fill(Color[][] pixels, int x1, int x2, int y1, int y2)

Fills in pixels within the region defined by x1 , x2 , y1 , and y2 where (x1, y1) represents the
upper-left corner inclusive, and (x2, y2) represents the lower-right corner exclusive. Your solution
should leave a single pixel as a border around the edges of the region (you can optionally ignore
this border requirement).

Note that you'll also have to set up the main method to properly call this method and display the
results. If you're ever confused about how to do something with the provided Picture class, check
out the Working with Images Tutorial slide above!

WARNING: Note that pixels is a 2d array. This means that the first index represents the current row and the
second index represents the current column. If you think about these as coordinate plane values (x, y) they'll
be reversed when dealing with the pixels array: pixels[y][x] gives the pixel at point (x, y).

More information on the [Working with Images Tutorial] slide!

NOTE: We have 3 different tests depending on how you want to think about borders in this problem. It's
impossible to write a solution that passes all 3. You only need to pass at least one before moving on to the
next subproblem.

Divide Canvas

C2_Divide_Canvas.zip

WARNING: This slide is NOT graded

Download Starter Code:

The next step of working our way up to a complete Mondrian solution is meant to help you in using
recursion with images. In this slide, you'll implement divideCanvas , a method which divides the
given picture into 4 equal sized regions n times. Below is the full specification:

divideCanvas(Picture p, int n)

Divides the given picture p (assumed to be all black) into 4 equally sized regions n times,
filling in each of the splitted regions with white while leaving a 1 or 2 pixel border along the
edges of each of the resulting regions.

For example, calling divideCanvas(p, 1) would split the canvas once, into four equally-sized
regions like below:

Calling divideCanvas(p, 2) would result in a picture where the four larger regions are each split
into four subregions:

HINT: Here you'll want to keep track of regions somehow within your solution. Think about how you
represented a region in your fill solution and how you can do something similar here!

� Mondrian Art �

C2_Mondrian.zip

WARNING: This slide IS graded

Download Starter Code:

Please ignore (don't delete) the compile.sh file in the workspace as it's used by staff to make running
your program easier in Ed.

If you used the previous development slides, we'd encourage you to modify your working
divideCanvas solution. The modifications required include:

1. Copy paste your divideCanvas and fill method(s) into Mondrian.java removing the
static keywords.

2. Change the base case of divideCanvas to the one described in the assignment spec (not
involving n)

3. Change the recursive case of divideCanvas to the one described in the assignment spec (you
won't want to always split in each direction)

4. Implement randomness:

1. Splitting regions (rather than doing so evenly)

2. Picking the color to fill a given region

Remember that your final submission must contain two files: basic.png and extension.png that
correspond to your basic and complex mondrian implementations. The easiest way to get these files
saved in your workspace is by using the Terminal tab in ed and generating your canvas that way.
Alternatively you can use the Run button, download the resulting image, and then re-upload it to
your workspace.

Reflection

Question 1

No response

Question 2

No response

Question 3

No response

Question 4

No response

Question 5

No response

The following questions will ask you practice metacognition to reflect on the topics covered on this
assignment and your experience completing it. For each question, focus on your plan and/or process
for working through the assignment along with the CS concepts. Think about things like how you
organized your working time, what sorts of things tended to go wrong, and how you dealt with those
errors or mistakes.

Please answer all questions.

How do you think algorithmic art (like what you created in this assignment) compares to human-
created art? What do you see as the advantages and limitations of algorithmic art?

How do you think the increased prevalence and sophistication of AI-generated artwork affects human
artists, whether established artists who created work used to build AI algorithms or aspiring artists
having to compete with computer-generated options?

Do you think the algorithm you used to create your images would have been easier, harder, or
neither to implement using iteration instead of recursion? Why?

Describe how you went about testing your implementation. What specific situations and/or test cases
did you consider? Why were those cases important?

What skills did you learn and/or practice with working on this assignment?

Question 6

No response

Question 7

No response

Question 8

No response

Question 9

No response

Question 10

No response

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

