
Programming Assignment 3: Spam Classifier

Background

Seemingly everyone is talking about Machine Learning and Artificial Intelligence these days. Artificial 
Intelligence (AI) is a subfield of Computer Science concerned with using computers to automate 
rational thinking. AI is one of the oldest research topics in computer science, and interest in AI has 
driven improvements in computer technology since at least the 1950s. Machine Learning (ML) is a 
subfield of AI that uses trends from previous examples to predict things about unseen data using 
statistical methods. ML algorithms are not magic -- they simply guess the most likely outcome based 
on many, many previous examples. This means that any ML algorithm's predictions are only as good 
as the data it was built upon, which can easily be biased in some way, or just wrong. As computer 
scientists, it is important to be able to recognize and advocate for appropriate uses of these models, 
regardless of how miraculous they may seem to the public.

Terminology
There are several machine learning terms used throughout the specification for this assignment that 
we would like to formally define before you begin. It might even be worth having this slide open in 
another tab while reading the assignment to make sure you fully understand the terms being given to 
you.

Model: The actual program that makes probabilistic classifications on provided inputs.
Training: Models are "trained" on previously gathered datasets to make future predictions.
Label: How data is classified after being run through the model. In our tree, leaf nodes will 
house classification labels.
Split: Some way of differentiating one classification from another for different inputs. In our 
tree, intermediary nodes will house splits. Each split defines a feature and a threshold to 
determine which direction to travel:

Feature: Important aspects/characteristics of our dataset that we use in classification that 
corresponds to a numeric value. Typically, the hardest part of a machine learning 
algorithm is determining how to take input data and "featurize" it into something a 
computer can understand

Ex: turning a sentence or image into a series of numbers.
Threshold: The numeric value we're comparing a feature against at any split within our 
classifier. In our tree, if the current input is less than the threshold we should go left. If it's 
greater than or equal to, we should go right.



Specification

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Implement a well-designed Java class that extends an abstract class to meet a given 
specification.
Understand and correctly use various Machine Learning terminology
Define data structures to represent compound and complex data
Write a functionally correct Java class to represent a binary tree.
Write classes that are readable and maintainable, and that conform to provided guidelines for 
style, implementation, and performance.
Produce clear and effective documentation to improve comprehension and maintainability of 
programs, methods, and classes.

Assignment

This assignment involves a lot of Machine Learning (ML) terminology that is further defined in the Background 
slide. For clarity, these terms are underlined within this specification

Your goal for this assignment is to implement a classification tree, a simplistic machine learning 
model that given some input data will predict some label for it. Below is a visual example of what a 
classification tree might look like for some weather data. It also includes relevant labels for each of 
the vocab terms defined on the last slide.



Expand

As seen above, in our classification tree the leaf nodes represent our predictive labels (Cloudy, 
Sunny, Windy, or Rainy) while the intermediary nodes represent a split on some feature of our 
data (windSpeed, temperature, or humidity). To reach a classification for some input, you start at the 
root of the tree and determine whether the corresponding feature falls to the left or right of the 
current node's threshold (determined by < or >=) and travel in the corresponding direction. Repeating 
this process will eventually lead you to a classification for your input. 

Below we'll trace through a sample input with our example weather model.

We'll begin at the root node with a Classifiable  object ("Input") containing the following 
features and their values:

 windSpeed (10.214), temperature (72.210), humidity (0.41234)

1. Since the windSpeed feature of the input is < the threshold (12.648) we'll travel left to the 
temperature node



2. Since the temperature feature of the input is >= the threshold (65.921) we'll travel right to the 
Sunny node

3. We have reached a leaf node and therefore can predict that input corresponds to a sunny day 
(the resulting label)



Another example of how a classification tree might be used is for spam email classification. Below is 
an alternative example of what a potential classification tree might look like in this case.



Expand

Similar to the above, you'll notice that the leaf nodes of this tree represent labels ("Spam" or "Ham" – 
a funny way of writing not spam) while the intermediary values represent a split on some feature of 
our data (wordPercent). Notice that the features in this example are slightly different from the 
weather one above. Specifically, wordPercent is the only feature within this model; however, we also 
need to track the specific word we're comparing the percentage of. This is accomplished by 
appending the word preceded by some arbitrary "splitter" character (in this case '~') that separates the 
two. 

To solidify this idea, we'll trace through an input much like the weather example above.

We'll begin at the root node with the following input:

        content
input:  hello, i am here at your office but the door is locked. are you there?

1. Since 'here' consists of 6.67% of the input email, which is < the threshold (10.00%) we'll travel 
left to the wordPercent~dolphin node.

2. Since 'dolphin' consists of 0.00% of the input email, which is < the threshold (3.75%) we'll travel 
left to the wordPercent~you.



3. Since 'you' consists of 6.67% of the input email, which is >= the threshold (5.814%) we'll travel 
right to the Ham node.



4. We have reached a leaf node and therefore can predict that input corresponds to a Ham email 
(the resulting label).



Expand

This is what you'll be implementing in this assignment! Specifically, you'll be creating a classification 
tree that's able to predict given some email whether it's "Spam" or "Ham"! 

System Structure
Below we describe three provided classes that will aid you in your implementation of 
ClassificationTree.java  . Make sure to understand the purpose of these classes and read through 
the provided documentation.

Classifiable.java

(Given) All data that gets classified via the classifier (e.g. Email.java ) implements this interface. It 
defines three methods:

public double get(String feature);

Returns the corresponding value for the given feature. 
Although there are classification trees where it would make sense to return something 



Expand

else (imagine a color feature within a real estate dataset), since our implementation is 
only dealing with thresholds this must return a double.

public Set<String> getFeatures();

Returns a set of all features for a given dataset. This is useful in determining whether or 
not this type of data point can be classified by a specific Classifier .

public Split partition(Classifiable other);

Returns a partition ( Split ) between this data point and other . 
How this is computed is up to the implementer (and is a large part of the complexity of 
our model).
Note that there is no difference between calling one.partition(two)  and 
two.partition(one) . Both will return Splits  with the same feature and threshold.
Example: In the Email  class, calling partition()   could return a new Split 
containing Feature: wordPercent~later Threshold: 0.125

A simple example of all the above implementations can be seen in the provided Email  
class.

Split.java

(Given) To help implement your node class, we have provided the Split  class: a wrapper class that 
you should use to store both a feature and threshold for any intermediary (non-leaf) nodes within 
your tree. Below are some methods that will likely be useful in your implementation:

public Split(String feature, double threshold)

Constructs a new Split  with the given feature and threshold

public String getFeature()

Returns the feature name without any specific component tied to it. 
In the case of our email example, it would return "wordPercentage" without the 
specific word tied to it (instead of "wordPercentage~dolphin")

public boolean evaluate(Classifiable value)

Evaluates the provided value Classifiable  object on this split, returning true if it falls 
below (<) this split, and false if it falls above. 

In other words, given some Classifiable data, return whether you should travel left 
or right from this point.



Expand

public String toString()

Returns a String representation of the given Split in the following format:

Feature: <feature>
Threshold: <threshold>

Classifier.java

(Given) The class you're required to implement must extend the Classifier  abstract class provided 
in the coding workspace. Below is a description of these methods and hints for useful methods 
within other classes.

This is an abstract class that any model implementation must extend to prove it is capable of 
classifying some Classifiable data (see starter code) input. Below are the three abstract methods of 
Classifier :

public abstract boolean canClassify(Classifiable input);

Given a piece of classifiable data, returns whether or not this tree is capable of classifying it.
You can imagine that it wouldn't make much sense to try and run an email input 
through our weather classifier above, which is why this method is useful! A tree is 
capable of classifying an input if all features within the tree (see Split.getFeature ) 
are contained within the input's valid features (see Classifiable.getFeatures ).

public abstract String classify(Classifiable input);

Given a piece of classifiable data, return the appropriate label that this classifier predicts. 
This method should model the steps taken in our weather example above: at every 
split point, evaluate (see Split.evaluate ) our input data and determine if it's less 
than our threshold. If so, continue left; otherwise, continue right. Repeat this process 
until a leaf node is reached.

If the input is unable to be classified by this classifier, this method should throw an 
IllegalArgumentException .

public abstract void save(PrintStream ps);

Saves this current classifier to the given PrintStream
For our classification tree, this format should be pre-order. Every intermediary 
node will print two lines of data, one for feature preceded by "Feature:" and one for 
threshold preceded by "Threshold:" (see Split.toString ). For leaf nodes, you should 
only print the label. Examples of the format can be seen below and through the 



trees  directory in the start code.

NOTE: This class also implements a calculateAccuracy  method that returns the model's accuracy on all 
labels in a provided testing dataset. This is useful to see how well our model works, and what labels it is 
struggling with classifying correctly.

Required Operations

ClassificationTree.java 

For this assignment, you're only required to implement ClassificationTree.java  a class that 
extends Classifier  but with the following additional constructors:

public ClassificationTree(Scanner sc)

Load the classification tree from a file connected to the given Scanner. sc  should not be null 
and the format of the input file should match that of the save  method described within 
Classifier . 

Importantly, in this method, you should only read data from the file using nextLine  and 
convert it to the appropriate format using Double.parseDouble .

public ClassificationTree(List<Classifiable> data, List<String> results)

Create a classification tree from the input data and corresponding labels. 
Note that you are building the tree up from scratch in this constructor. 

The lists should be processed in parallel, where the label corresponding to data.get(i)  can be 
found at results.get(i) . The general construction process should be accomplished via the 
algorithm described below. There will be two parts:

Traverse through the current classification tree until you reach a leaf node.
If the node's label matches the current label, do nothing (our model is accurate up to 
this point).
If the label is incorrect, create a split between the data used to create the original 
leaf node* and our current input.

HINT: Use Classifiable.partition  to generate this split
Insert a new intermediary node that uses this split to correctly classify the 
current data and the old data.

This method should throw an IllegalArgumentException  if the provided lists aren't the same 
size or the lists are empty.

* This algorithm requires you to keep track of both the label and the Classifiable datapoint first assigned to 
this label within every leaf node created in this constructor, as without the previous Classifiable datapoint we 
would be unable to create a new split! Ideally we'd like to keep track of all input data that falls under a specific 
leaf node such that when creating a new split, we can make sure it's valid for our entire training dataset. For 



Expand

simplicity, only worry about the first datapoint used to create a label node.

The algorithm above is further shown in the following diagrams:

Before we begin our algorithm, we need to make sure there is a non-empty tree we can traverse. 
We start with an empty tree and process the first input:

At the very beginning of our constructor, we should fill our empty tree with a single node 
containing the appropriate label of the first data point:



Note that this node also stores a reference to the data used to create it. This will be useful in the 
next step. Once we've processed the first data point, we move on to the second. Now, we can 
follow the algorithm and traverse through the existing tree until reaching a leaf node (which just 
so happens to be the only node in our tree):



Then we see if the resulting label is correct. Our expected result is "Spam", but the one predicted 
by our model is "Ham". This is incorrect, so we need to create a new split via the 
Classifiable.partition()  method:



This will return a new Split  which we can then store within a new intermediary node that will 
allow us to correctly distinguish one  vs. two . All that's left to do is organize the label nodes 
appropriately as seen below:

Furthermore, we can imagine undertaking this process with a third data point as depicted below



We'll repeat the algorithm as described above. First, traverse through the existing tree until we 
reach a leaf node:



Since this datapoint's here  percentage is < 0.1, we travel left:



Expand

Now we arrive at a leaf node and notice that the label is correct (our model predicts "Spam" as 
expected by our input). This means we need to make no further changes and can leave our tree as 
it is!

Repeating this process for all data points in our provided lists will result in a working classification 
tree trained on existing input data!

ClassificationNode

As part of writing your ClassificationTree  class, you should also have a private static inner 
class called ClassificationNode  to represent the nodes of the tree. The contents of this class are up 
to you, but must meet the following requirements:

You must have a single ClassificationNode  class that can represent both splits and labels — 
you should not create separate classes for the different types of nodes.

Don't worry about efficient subclassing/superclassing even though some fields 
won't be used in all cases. This is entirely ok for this assignment.

The fields of the ClassificationNode  class must be public .
The ClassificationNode  class must not contain any constructors or methods that are not 
used by the ClassificationTree  class.

File Format

The files that are both created by the save  method and read by the Scanner  constructor will follow 
the same format. These files will contain a pair of lines to represent intermediary nodes and a single 
line to represent leaf nodes in the ClassificationTree . The first line in each intermediary node pair 
will start with "Feature: " followed by the feature and the second line will start with "Threshold: " 
followed by the threshold. Lines representing the leaf nodes will simply contain the label. The format 
of the file should be a pre-order traversal of the tree.

For example, consider the following sample file ( simple.txt ):

Feature: wordPercent~here
Threshold: 0.125
Feature: wordPercent~are
Threshold: 0.16666666666666666
Feature: wordPercent~for
Threshold: 0.16666666666666666
Feature: wordPercent~our
Threshold: 0.0625
ham
spam
ham
ham



ham

Notice that the nodes appear in a pre-order traversal of the resulting tree:

Try out your Classifier!
Once those methods are implemented, you'll have a working classifier! Try it out using Client.java  
and see how well it does (what is its accuracy on our test data). Also, try saving your tree to a file and 
see what it looks like. Is it splitting on features you'd expect? Why or why not? (Note that this is a big 
area of current CS research called "explainable AI" - how can we interpret the results from these 
massive probability models that are often difficult for humans to understand).

Client Program & Visualization
We have provided you with a Client  program to help test your implementation of the methods 
within ClassificationTree.java . The client can create binary trees from the provided .csv  or 



Expand

.txt  files and test their accuracy. Note that in order to pass in these files, you should call them by 
folderName/fileName . For example, trees/simple.txt  .

Click "Expand" below to see sample executions of the client for different situations (user input is bold 
and underlined and additional information is italicized).

1. This client visualization uses your Scanner constructor, calculateAccuracy() , and classify() . 
The constructor loads a pre-trained model from a given text file. The following inputs allow us to test 
its accuracy using the pre-set TEST_FILE  (defined in line 8 of Client.java ) and use the model to 
predict labels for data points in a given test.csv  file. 

NOTE: When testing the Scanner  constructor, the contents of the file will be exactly the same as the input 
.txt  file used to initially load the pre-trained model.

Welcome to the CSE 123 Classifier! To begin, enter your desired mode of operation:

1) Train classification model
2) Load model from file
Enter your choice here: 2 (the Scanner constructor)
Please enter the path to the file you'd like to load: trees/simple.txt

What would you like to do with your model?

1) Test with an input file
2) Get testing accuracy
3) Save to a file
4) Quit
Enter your choice here: 2 (calculateAccuracy())
Overall: 0.8637632607481853
ham: 0.9961365099806826

1) Test with an input file
2) Get testing accuracy
3) Save to a file
4) Quit
Enter your choice here: 1 (classify() called on every data point)
Please enter the file you'd like to test: weather/test.csv
Results: [ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, 
ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, 
ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, 
...
ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham, ham]

1) Test with an input file
2) Get testing accuracy
3) Save to a file
4) Quit
Enter your choice here: 4



Expand

2. This client visualization uses the ClassificationTree  constructor that takes in data and their 
corresponding labels, calculateAccuracy()  (implemented for you), and save() . You can follow the 
pattern of inputs below to train the classification model using some train.csv  file (this calls the 
constructor), retrieve testing accuracy (similar to above) and save the trained model to a file so that it 
is in .txt  format (like the sample input files in the trees/ folder).

Welcome to the CSE 123 Classifier! To begin, enter your desired mode of operation:

1) Train classification model
2) Load model from file
Enter your choice here: 1 (data/results constructor)

What would you like to do with your model?

1) Test with an input file
2) Get testing accuracy
3) Save to a file
4) Quit
Enter your choice here: 2 (calculateAccuracy())
Overall: 0.5713753954959985
ham: 0.5556986477784932
spam: 0.6736694677871149

1) Test with an input file
2) Get testing accuracy
3) Save to a file
4) Quit
Enter your choice here: 3 (save())
Please enter the file name you'd like to save to: destinationFile.txt

1) Test with an input file
2) Get testing accuracy
3) Save to a file
4) Quit
Enter your choice here: 4

NOTE: After quitting, the saved file should be available for viewing in the console.

Testing
There are no formal testing requirements for this assignment. However, we'd encourage you to get 
your hands dirty and see how well your model performs on the provided dataset / investigate the 
output files to see if you can make sense of what the inner structure is!



� Implementation Guidelines
As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide. 
In particular, pay attention to these requirements:

Constructors in inner class:
Any constructors created should be used.
When applicable, reduce redundancy by using the this()  keyword to call another 
constructor in the same class.
Clients of the class should never have to set fields of an object unconditionally after 
construction — there should be a constructor included for this situation.

Methods:
All methods present in ClassificationTree  that are not listed in the specification must 
be private .
Make sure that all parameters within a method are used and necessary.
Avoid unnecessary returns.

x = change(x) : 
Similar to with linked lists, do not "morph" a node by directly modifying fields (especially 
when replacing an intermediary node with a leaf node or vice versa). Existing nodes can 
be rearranged in the tree, but adding a new value should always be done by creating and 
inserting a new node, not by modifying an existing one. 
An important concept introduced in lecture was called x = change(x) . This idea is 
related to the proper design of recursive methods that manipulate the structure of a 
binary tree. You should follow this pattern where necessary when modifying your 
trees. 

Avoid redundancy: 
If you find that multiple methods in your class do similar things, you should create helper 
method(s) to capture the common code. As long as all extra methods you create are 
private (so outside code cannot call them), you can have additional methods in your class 
beyond those specified here. 
Look out for including additional base or recursive cases when writing recursive code. 
While multiple calls may be necessary, you should avoid having more cases than you 
need. Try to see if there are any redundant checks that can be combined!

Data Fields: 
Properly encapsulate your objects by making data fields in your ClassificationTree  
class private. (Fields in your ClassificationNode  class should be public following the 
pattern from class.) 
Avoid unnecessary fields; use fields to store important data of your objects but not to 
store temporary values only used in one place. 
Fields should always be initialized inside a constructor or method, never at declaration. 

Commenting 
Each method should have a comment including all necessary information as described in 



the Commenting Guide. Comments should be written in your own words (i.e. not copied 
and pasted from this spec).
Make sure to avoid including implementation details in your comments. In particular, for 
your object class, a client should be able to understand how to use your object effectively 
by only reading your class and method comments, but your comments should maintain 
abstraction by avoiding implementation details.
Continuing with the previous point, keep in mind that the client should not be aware of 
what implementation strategy your class/methods utilize.


