
Programming Assignment 2: Disaster Relief

Specification

(This assignment was partially inspired by Keith Schwarz's 2020 Nifty Assignment.)

Background
When natural disasters strike, governments, relief organizations, and even individual donors must
often wrestle with how best to allocate available resources to help those who have been affected. This
is generally a very complex decision, balancing countless logistical, economic, political, and other
factors. One particular challenge is that different geographic areas can require different financial or
other resources for relief, even if the populations of the areas are similar. (Or, put another way, the
cost to help a single person after a disaster is not always constant.) Organizations sometimes have to
make difficult decisions in the hope of helping as many people as possible with the available
resources.

In this assignment, you will implement a system to determine how to allocate a budget of relief
resources to help as many people as possible.

NOTE: While our simulation will focus on helping the greatest number of people for the least amount of
money, this is an oversimplification of the problem of allocating resources in the wake of a disaster, and may
not necessarily be the best approach.

Learning Objectives
By completing this assignment, students will demonstrate their ability to:

Define a solution to a given problem using a recursive approach
Write functionally correct recursive methods
Produce clear and effective documentation to improve comprehension and maintainability of a
method
Write methods that are readable and maintainable, and that conform to provided guidelines for
style and implementation

Required Methods
For this assignment, you will implement only a single method:

Expand

public static Allocation allocateRelief(double budget, List<Region> sites)

This method takes a budget and a list of Region objects as parameter. The method will compute and
return the allocation of resources that will result in the most people being helped with the given
budget. If there is more than one allocation that will result in the most people being helped, the
method will return the allocation that costs the least. If there is more than one allocation that will
result in the most people being helped for the lowest cost, you may return any of these allocations.

For the purposes of our simulation, we will assume that providing relief to a region is atomic,
meaning that either all people in the region are helped and the full cost is paid, or no relief is
allocated to that region. We will not deal with the possibility of providing partial relief to a particular
region.

You should implement your allocateRelief method where indicated in the provided Client.java
file. You may also implement any additional helper methods you might like. (For example, you will
likely want to implement a public-private pair in your algorithm.)

Region class

In our system, we will represent areas that may be allocated relief funds with the following Region
class (comments and some methods are omitted here; see the full Region class in the coding
challenge slide for these):

import java.util.*;

public class Region {
 private String name;
 private int population;
 private double baseCost;

 public Region(String name, int pop, double baseCost) {
 this.name = name;
 this.population = pop;
 this.baseCost = baseCost;
 }

 public int getPopulation() { return this.population; }

 public double getCost(int index) {
 return (1 + 0.1 * index) * this.baseCost;
 }

 public String toString() {
 return name + ": pop. " + population + ", base cost: $" + baseCost;
 }
}

Expand

Allocation class

We will represent a List of regions that will receive resources with the following Allocation class
(comments and some methods are omitted here; see the full class in the coding challenge slide for
these):

public class Allocation {

 private List<Region> regions;

 private Allocation(List<Region> regions) {
 this.regions = new ArrayList<>(regions);
 }

 public Allocation() {
 this(new ArrayList<>());
 }

 public List<Region> getRegions() {
 return new ArrayList<>(regions);
 }

 public Allocation withRegion(Region r) {
 if (regions.contains(r)) {
 throw new IllegalArgumentException("Allocation already contains region " + r);
 }
 List<Region> newRegions = new ArrayList<>(regions);
 newRegions.add(r);
 return new Allocation(newRegions);
 }

 public Allocation withoutRegion(Region r) {
 if (!regions.contains(r)) {
 throw new IllegalArgumentException("Alloction doesn't contain region " + r);
 }
 List<Region> newRegions = new ArrayList<>(regions);
 newRegions.remove(r);
 return new Allocation(newRegions);
 }

 public int size() {
 return regions.size();
 }

 public int totalPeople() {
 int total = 0;
 for (Region r : regions) {
 total += r.getPopulation();
 }
 return total;

 }

 public double totalCost() {
 double total = 0;
 for (int i = 0; i < regions.size(); i++) {
 total += regions.get(i).getCost(i);
 }
 return total;
 }

 public String toString() {
 return regions.toString();
 }
}

The two methods withRegion and withoutRegion can be used to add/remove a Region to/from an
Allocation . Notice that these methods return a new Allocation rather than modifying an
existing Allocation , similar to how String methods like substring or toUpperCase return a
new String rather than modifying an existing one:

Allocation empty = new Allocation();
Region one = new Region("Region #1", 50, 500);

Allocation added = empty.withRegion(one);
Allocation removed = added.withoutRegion(one);

Make sure you write your implementation accordingly.

Client Program
We have provided a client program that will allow you to test your allocateRelief implementation.
This client provides two methods that might be useful.

public static List<Region> createSimpleScenario()

Manually creates a simple list of regions to represent a known scenario.
We have provided one example in the client code, and a few others in the examples
below.

public static List<Region> createRandomScenario(int numRegions, int minPop, int maxPop, double minCostPer,
 double maxCostPer)

Creates a scenario with numRegions regions by randomly choosing the population and cost of
each region.

Populations will be chosen between minPop and maxPop (inclusive)
Costs will be generated by choosing a random value between minCostPer and

Expand

maxCostPer (inclusive) and multiplying that cost by the chosen population.

You can modify createSimpleScenario with different Region objects to test your implementation
in scenarios of your own design, and/or you can generate random scenarios to try using
createRandomScenario .

Click "Expand" below to see some example scenarios, their results, and visualizations of the decision
trees.

Example 1:

Input:

double budget = 1000;

public static List<Region> createSimpleScenario() {
 List<Region> result = new ArrayList<>();
 result.add(new Region("Region #1", 50, 1000));
 result.add(new Region("Region #2", 100, 1000));
 return result;
}

Output:

[Region #1: pop. 50, base cost: $1000.0, Region #2: pop. 100, base cost: $1000.0]
Result:
 [Region #2: pop. 100, base cost: $1000.0]
 People helped: 100
 Cost: $1000.00
 Unused budget: $0.00

Decision Tree:

Expand

Expand

Example 2:

Input:

double budget = 1000;

public static List<Region> createSimpleScenario() {
 List<Region> result = new ArrayList<>();
 result.add(new Region("Region #1", 50, 400));
 result.add(new Region("Region #2", 50, 560));
 return result;
}

Output:

[Region #1: pop. 50, base cost: $400.0, Region #2: pop. 50, base cost: $560.0]
Result:
 [Region #2: pop. 50, base cost: $560.0, Region #1: pop. 50, base cost: $400.0]
 People helped: 100
 Cost: $1000.00
 Unused budget: $0.00

Decision Tree:

Example 3:

Input:

double budget = 2000;

Expand

public static List<Region> createSimpleScenario() {
 List<Region> result = new ArrayList<>();
 result.add(new Region("Region #1", 50, 500));
 result.add(new Region("Region #2", 100, 700));
 result.add(new Region("Region #3", 60, 1000));
 return result;
}

Output:

[Region #1: pop. 50, base cost: $500.0, Region #2: pop. 100, base cost: $700.0, Region #3: pop. 60, base cost: $10
Result:
 [Region #3: pop. 60, base cost: $1000.0, Region #2: pop. 100, base cost: $700.0]
 People helped: 160
 Cost: $1770.00
 Unused budget: $230.00

Decision Tree:

Example 4 (same as Example 3, but with Region #3's population as 50 instead):

Input:

double budget = 2000;

public static List<Region> createSimpleScenario() {
 // Same regions as Example 2 but Location 3 has a population of 50
 List<Region> result = new ArrayList<>();
 result.add(new Region("Region #1", 50, 500));
 result.add(new Region("Region #2", 100, 700));
 result.add(new Region("Region #3", 50, 1000));
 return result;
}

Output:

Expand

[Region #1: pop. 50, base cost: $500.0, Region #2: pop. 100, base cost: $700.0, Region #3: pop. 50, base cost: $10
Result:
 [Region #2: pop. 100, base cost: $700.0, Region #1: pop. 50, base cost: $500.0]
 People helped: 150
 Cost: $1250.00
 Unused budget: $750.00

Decision Tree:

Note: Each of the green nodes in the trees represent nodes that should be added to the result of
generateOptions as a possible allocation.

Notice that the ordering of regions in your allocation matters. For example, a list ordered
[Region #1: pop. 100, base cost: $1000.0, Region #2: pop. 50, base cost: $200.0] and a
list ordered [Region #2: pop. 50, base cost: $200.0, Location #1: pop. 100, base cost:
$1000.0] are different in their cost. Specifically, the later a region appears in an Allocation , the
more it will cost to help people within that region. You can consider this being due to the situation
growing more dire as time progresses. You should focus on the fact that different orderings of the
same regions are considered different allocations because of this.

You don't need to worry about the details of how the cost computed; calling the Allocation 's
totalCost() method will return the correct total for you. You do not need to directly call the
getCost() method of Region .

You may create your own client programs if you like, and you may modify the provided client if you
find it helpful. However, your methods must work with the provided files without
modification and must meet all requirements below.

Testing Requirements
For this assignment, you'll be required to implement four total JUnit tests. The first three should
cover the following cases:

Expand

Expand

Expand

Expand

Expand

Case 1:

budget: 500
sites:
 name: Region #1, population: 100, base cost: 400
 name: Region #2, population 150, base cost 600

Think through this case and what the result should be, then expand to see the expected result:

Case 2:

budget: 500
sites:
 name: Region #1, population: 150, base cost: 400
 name: Region #2, population 100, base cost 450

Think through this case and what the result should be, then expand to see the expected result:

Case 3:

budget: 500
sites:
 name: Region #1, population: 150, base cost: 450
 name: Region #2, population 150, base cost 400

Think through this case and what the result should be, then expand to see the expected result:

The fourth test should be a test case you come up with on your own. You are not required to look
inside the Region class to determine how the cost is determined, therefore it is totally fine for this
test case to be rather simplistic. Our only requirement for this fourth test is that the inputted
sites contains at least two regions.

All four tests should be placed in their own methods within the provided Testing.java file. You're
welcome to implement tests other than the ones outlined here, but doing so is not required.

Implementation Requirements
To earn a grade higher than N on the Behavior and Concepts dimensions of this assignment, your
algorithm must be implemented recursively. You will want to utilize the public-private pair
technique discussed in class. You are free to create any helper methods you like, but the core of
your algorithm (specifically, building and potentially evaluating possible allocations of relief funds)
must be recursive.

Additionally, for this assignment, you should follow the Code Quality guide when writing your code
to ensure it is readable and maintainable. In particular, you should focus on the following
requirements:

Avoid recursing any more than you need to. Your method should not continue to explore a path
when the current Allocation is no longer viable.
Watch out for branches of an if / else statement that shares the same exact code. You should
combine the conditionals and write the code only once.
Make sure that all parameters within a method are used and necessary.
You should comment your code following the Commenting Guide. You should write comments
with basic info (a header comment at the top of your file), a class comment for your Mondrian
class, and a comment for every method.

Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.
Continuing with the previous point, keep in mind that the client should not be aware of
what implementation strategy your class/methods utilize.

All methods present in your class that are not listed in the specification must be private.

Disaster Relief

P2_DisasterRelief.zip

Download Starter Code

Remember that you're required to write four tests, each within their own method in Testing.java .
More information on this requirement can be found in the spec.

Reflection

Question 1

No response

The following questions will ask you practice metacognition to reflect on the topics covered on this
assignment and your experience completing it. For each question, focus on your plan and/or process
for working through the assignment along with the CS concepts. Think about things like how you
organized your working time, what sorts of things tended to go wrong, and how you dealt with those
errors or mistakes.

Please answer all questions.

The first 3 questions will require you to reflect about potential benefits and drawbacks in employing
algorithms to improve societal welfare. Start by watching a short segment of the following talk from
UC Berkeley professor Rediet Abebe (2m 9s to 8m 57s):

An error occurred.

Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser.

(https://youtu.be/h1NqpK4gDrM?t=129)

How do you think measurement challenges (such as data sparsity and inaccurate metrics) affect the
effectiveness of algorithms in resource allocation for disaster relief?

Question 2

No response

Question 3

No response

Question 4

No response

Question 5

No response

Question 6

No response

Question 7

No response

Question 8

No response

Question 9

What are the potential risks of relying on simple metrics (like income or population density) when
allocating disaster relief resources, and how might these risks be mitigated?

Explain what income shocks are. How might similar ‘shocks’ or unforeseen events affect disaster
relief efforts, and how could an algorithm be designed to handle these sudden needs?

Describe how you went about testing your implementation. What specific situations and/or test cases
did you consider? Why were those cases important?

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

No response

Question 10

No response

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

I attest that the work I am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If I have any concerns about this
policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

