
Programming Assignment 1: Mini-Git

Specification

Background
Version control systems are software features or programs designed to track changes to documents or
sets of documents over time. In most systems, each time changes are made to the documents being
tracked, a new version or revision is logged. Usually some additional information, called metadata, is
also tracked along with each revision. This metadata can include a timestamp for when the changes
were made, one or more authors of the changes, comments or notes about the changes, and/or
many other types of information. Version control systems also typically provide a way to review the
history of the documents being tracked, along with operations to revert to previous points in history if
necessary. The history tracking features of Google Docs are an example of a version control system.

Version control systems that are designed specifically for tracking source code for computer
programs are often called source control systems and may include additional features useful for
tracking source code. These features may include associating certain types of files with particular
programming languages or running automated tests each time a new revision is created. One popular
source control system in wide use today is Git, which was developed by Linus Torvalds (who also
created the Linux operating system) and initially released in 2005.

In this assignment, we will implement our own, simplified version of a version control system similar
to Git, using linked-lists.

NOTE: Version control systems typically need to address at least two significant problems: how to track and
manage the metadata for the revisions that make up the version history, and how to represent and track the
actual changes to the documents themselves. We will focus only on the first problem (tracking metadata and
history); for more information on how Git handles tracking the changes, see the free, online book Pro Git.

System Structure
In our system, as in Git, a set of documents and their histories are referred to as a repository. Each
revision within a repository is referred to as a commit. You will implement a class called Repository
that supports a subset of the operations supported by real Git repositories. (We will not be dealing
with features such as branching or remote repositories. We will assume histories are fairly linear and
mostly take place in a single, local repository.)

We will represent commits with following provided class. You must not modify this class in any

Expand

way.

private class Commit {
 private static int currentCommitID;
 public final long timeStamp;
 public final String id;
 public final String message;
 public Commit past;

 public Commit(String message, Commit past) {
 this.id = "" + currentCommitID++;
 this.message = message;
 this.timeStamp = System.currentTimeMillis();
 this.past = past;
 }

 public Commit(String message) {
 this(message, null);
 }

 @Override
 public String toString() {
 SimpleDateFormat formatter = new SimpleDateFormat("yyyy-MM-dd 'at' HH:mm:ss z");
 Date date = new Date(timeStamp);

 return id + " at " + formatter.format(date) + ": " + message;
 }

 public static void resetIds() {
 Commit.currentCommitID = 0;
 }
}

Each commit consists of a unique identifier, a message describing the changes, the general time the
commit was made, and a reference to the immediately previous commit. In our representation,
identifiers will be strings.

Note: You may see some code you're unfamiliar with (namely the SimpleDateFormat and Date classes), but
that's okay! You are not required to understand these, just know that SimpleDateFormat and Date allow us
to print out the current date. Feel free to explore these classes or ask the course staff if you'd like to learn
more about them!

As we eventually did with our LinkedIntList and ListNode classes, we will implement the Commit
class as a public static inner class within the Repository class. (Ideally, we would make this class
private, but we leave it public for ease of testing.)

Notice that the id and message fields of the Commit class are all final , meaning that you will not
be able to modify them. If you attempt to change the value of these fields after they have been

initialized, you will get a compiler error such as the following:

error: cannot assign a value to final variable message

Required Operations
Your Repository class must include the following methods:

public Repository(String name)

Create a new, empty repository with the specified name
If the name is null or empty, throw an IllegalArgumentException

public String getRepoHead()

Return the ID of the current head of this repository.
If the head is null , return null

public int getRepoSize()

Return the number of commits in the repository

public String toString()

Return a string representation of this repository in the following format:
<name> - Current head: <head>

<head> should be the result of calling toString() on the head commit.
If there are no commits in this repository, instead return <name> - No commits

public boolean contains(String targetId)

Return true if the commit with ID targetId is in the repository, false if not.
Note that all elements are unique. Therefore, it should not continue looping unnecessarily once
the element of interest is found.

public String getHistory(int n)

Return a string consisting of the String representations of the most recent n commits in this
repository, with the most recent first. Commits should be separated by a newline (\n)
character.

If there are fewer than n commits in this repository, return them all.
If there are no commits in this repository, return the empty string.
If n is non-positive, throw an IllegalArgumentException .

public String commit(String message)

Expand

Create a new commit with the given message, add it to this repository.
The new commit should become the new head of this repository, preserving the history
behind it.

Return the ID of the new commit.

public boolean drop(String targetId)

Remove the commit with ID targetId from this repository, maintaining the rest of the history.
Returns true if the commit was successfully dropped, and false if there is no commit that
matches the given ID in the repository.
Note that all elements are unique. Therefore, it should not continue looping unnecessarily once
the element of interest is found.

public void synchronize(Repository other)

Takes all the commits in the other repository and moves them into this repository,
combining the two repository histories such that chronological order is preserved. That is, after
executing this method, this repository should contain all commits that were from this and
other , and the commits should be ordered in timestamp order from most recent to least
recent.

If the other repository is empty, this repository should remain unchanged.
If this repository is empty, all commits in the other repository should be moved into
this repository.
At the end of this method's execution, other should be an empty repository in all cases.
You should not construct any new Commit objects to implement this method. You may
however create as many references as you like.

Run Time Requirement

Unless otherwise stated, all methods must run in O(n) time where n is the size of the
repository.
getRepoHead , toString , and commit must run in O(1) time.

synchronize Explained

Note that while the other operations are real Git ones, synchronize is not. synchronize is a great
exercise, but does not mirror any functionality a real git repository would ever want to do.

Since this operation is somewhat complicated, consider an example. Assume we have the
following two repositories with their own history:

Repository #1 (repo1)

Expand

5 at 2023-07-02 at 18:28:39 PDT: Add initial scaffold
4 at 2023-07-02 at 16:25:43 PDT: Edit README
3 at 2023-06-30 at 03:45:12 PDT: Upload README

Repository #2 (repo2)
2 at 2023-07-01 at 12:04:28 PDT: Edit documentation
1 at 2023-04-21 at 07:21:12 PDT: Upload documentation

Then, we synchronize Repository #2 into Repository #1 (repo1.synchronize(repo2)). Our
repositories would now have the following histories:

Repository #1 (repo1)
5 at 2023-07-02 at 18:28:39 PDT: Add initial scaffold
4 at 2023-07-02 at 16:25:43 PDT: Edit README
2 at 2023-07-01 at 12:04:28 PDT: Edit documentation
3 at 2023-06-30 at 03:45:12 PDT: Upload README
1 at 2023-04-21 at 07:21:12 PDT: Upload documentation

Repository #2 (repo2)

Notice that Repository #1 now contains all of the commits, while Repository #2 is empty.
Additionally, the order of commits in Repository #1 is based solely on their time stamps, from
most recent to least recent. Since Repository #2 is now empty, we did not construct any new
commits, only rearranging the ones that were initially present.

Client Program & Visualization
We have provided a client program that will allow you to test your Repository implementation by
creating and manipulating repositories. The client program will directly call the methods you
implement in your Repository class and will show you the resulting changes to the repositories.
Click "Expand" below to see a sample execution of the client (user input is bold and underlined).

Welcome to the Mini-Git test client!
Use this program to test your Mini-Git repository implemenation.
Make sure to test all operations in all cases --
some cases are particularly tricky.

Available repositories:
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: create repo1
 New repository created: repo1 - No commits

Available repositories:
repo1 - No commits
Operations: [create, head, history, commit, drop, synchronize, quit]

Enter operation and repository: commit repo1
Enter commit message: First commit!
 New commit: 0

Available repositories:
repo1 - Current head: 0 at 2023-10-25 at 06:53:42 AEDT: First commit!
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: commit repo1
Enter commit message: Another commit.
 New commit: 1

Available repositories:
repo1 - Current head: 1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: history repo1
How many commits back? 2
1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
0 at 2023-10-25 at 06:53:42 AEDT: First commit!

Available repositories:
repo1 - Current head: 1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: create repo2
 New repository created: repo2 - No commits

Available repositories:
repo2 - No commits
repo1 - Current head: 1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: commit repo2
Enter commit message: Commit the third
 New commit: 2

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: commit repo1
Enter commit message: Fourth commit
 New commit: 3

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 3 at 2023-10-25 at 06:54:05 AEDT: Fourth commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: history repo1
How many commits back? 4
3 at 2023-10-25 at 06:54:05 AEDT: Fourth commit
1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
0 at 2023-10-25 at 06:53:42 AEDT: First commit!

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 3 at 2023-10-25 at 06:54:05 AEDT: Fourth commit

Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: head repo1
3

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 3 at 2023-10-25 at 06:54:05 AEDT: Fourth commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: commit repo1
Enter commit message: one more commit
 New commit: 4

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 4 at 2023-10-25 at 06:54:13 AEDT: one more commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: drop repo1
Enter ID to drop: 3
 Successfully dropped 3

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 4 at 2023-10-25 at 06:54:13 AEDT: one more commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: history repo1
How many commits back? 3
4 at 2023-10-25 at 06:54:13 AEDT: one more commit
1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
0 at 2023-10-25 at 06:53:42 AEDT: First commit!

Available repositories:
repo2 - Current head: 2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
repo1 - Current head: 4 at 2023-10-25 at 06:54:13 AEDT: one more commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: synchronize repo1
Which repository would you like to synchronize into the given one? repo2

Available repositories:
repo2 - No commits
repo1 - Current head: 4 at 2023-10-25 at 06:54:13 AEDT: one more commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: history repo1
How many commits back? 6
4 at 2023-10-25 at 06:54:13 AEDT: one more commit
2 at 2023-10-25 at 06:54:00 AEDT: Commit the third
1 at 2023-10-25 at 06:53:46 AEDT: Another commit.
0 at 2023-10-25 at 06:53:42 AEDT: First commit!

Available repositories:
repo2 - No commits
repo1 - Current head: 4 at 2023-10-25 at 06:54:13 AEDT: one more commit
Operations: [create, head, history, commit, drop, synchronize, quit]
Enter operation and repository: quit

In addition to this, you may (and are encouraged) to create your own client programs to to test out
your implementation on various cases. You may also modify the provided client if you find it helpful.
However, your Repository class must work with the provided client without modification
and must meet all requirements above. To better understand what is happening, you can
reference these slides which visualize the repositories changing throughout the operations.

Testing
On this assignment, you are required to write 3 of your own test cases for synchronize covering
the different LinkedList cases we've talked about in class: Front, Middle, and Last. Each of these test
cases should be contained within their own method in your Testing class. We've provided you
two additional helper methods to help in this process, as well as the ExampleTesting.java to give
you an idea of how to use them. You are not required to write test cases for any of the other instance
methods for your Repository implementation, but we'd encourage you do so to get more practice
writing JUnit tests.

Each of the tests you write must include a throws InterruptedException in the method declaration
(similar to how we write throws FileNotFoundException when doing File I/O) as we must
temporarily interrupt execution via Thread.sleep to ensure individual commits have unique
timestamps. Examples of this can be seen in ExampleTesting.java

WARNING: If you choose to not use the provided helper methods, you must make sure to call
Thread.sleep(1) between each of your commits. This will ensure each individual Commit node has a unique
timestamp

WARNING: We have provided a test case that simply tests to see if you've uploaded Testing.java and it fails no
tests. It does not check whether or not you've met the testing requirements for this assignment.

� Implementation Guidelines
As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements and hints:

WARNING: You must use an iterative approach to this assignment. While recursion is a powerful tool that
we'll explore later in the course, we're specifically assessing your ability to reason about LinkedLists and the
cases they generate.

The specified exceptions must be thrown correctly in the specified cases. Exceptions should be
thrown as soon as possible, and no unnecessary work should be done when an exception is
thrown. Exceptions should be documented in comments, including the type of exception
thrown and under what conditions.
You should not construct any unnecessary Commit objects. Specifically, you should only
construct a Commit object when an entirely new commit is being created. If commits are being

removed or rearranged, you should manipulate the existing Commit objects. (You may create as
many references to Commit objects as you like.)

You should only need to construct Commit objects in the commit() method.
Your Repository class should have the following fields as specified below and they should be
declared private . You are not allowed to have any other fields.

A reference to the head of the repository.
A field to keep track of the repository's name.
(Optional) A size field to keep track of the size of the repository.

These methods can be quite challenging! It is valuable to take a look at resources from class,
particularly the LinkedIntList pre-class work, in-class activities, and section problems.
Notably, the weave problem in Section 7 will be a helpful starting point for implementing
synchronize .
You should not modify the id, message , or timeStamp fields directly. In particular if you
run into the issue error: cannot assign a value to final variable message , it likely
means that you are attempting to modify a Commit object's data, instead of rearranging the
commits.
Some notes on synchronize :

Note that you will have to compare the time stamps to determine which order they
should appear in and that the timeStamp field is of type long . This is another primitive
that you haven't seen before, but you can essentially treat it as an int when doing your
comparisons. So, if you're trying to check if commit1 is chronologically earlier than
commit2 , you can check if commit1.timeStamp < commit2.timeStamp .

Spec Walkthrough

An error occurred.

Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your
browser.

Mini-Git

P1_MiniGit.zip

Download starter code:

Reflection

Question 1

No response

Question 2

No response

Question 3

No response

Question 4

No response

Question 5

The following questions will ask you practice metacognition to reflect on the topics covered on this
assignment and your experience completing it. For each question, focus on your plan and/or process
for working through the assignment along with the CS concepts. Think about things like how you
organized your working time, what sorts of things tended to go wrong, and how you dealt with those
errors or mistakes.

Please answer all questions.

Have you ever used a version control system before? If so, in what contexts? What problems did it
help you solve? If not, what are some situations in which it might be helpful to have a system like
this?

How do you think a system like Mini-Git would need to be different if multiple people were
committing to the same repository? Would the system still work? Would it need to be managed
differently?

How do you think this assignment would have been different if we asked you to implement Mini-Git
using an ArrayList for inspiration (Commit[] elementData and int size) instead of the linked
structure we used? Which aspects would have been easier? Which aspects would have been more
difficult? Which approach would you have preferred if given the choice?

Describe how you went about testing your implementation. What specific situations and/or test cases
did you consider? Why were those cases important?

No response

Question 6

No response

Question 7

No response

Question 8

No response

Question 9

No response

Question 10

No response

What skills did you learn and/or practice with working on this assignment?

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

I attest that the work I am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If I have any concerns about this
policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

