
Programming Assignment 0: Ciphers

Background

Cryptography (not to be confused with cryptocurrency and blockchain) is a branch of Computer
Science and Mathematics concerned with turning input messages (plaintexts) into encrypted ones
(ciphertexts) for the purpose of discreet transfer past adversaries. The most modern and secure of
these protocols are heavily influenced by advanced mathematical concepts and are proven to leak 0
information about the plaintext. As the Internet itself consists of sending messages through other
potentially malicious devices to reach an endpoint, this feature is crucial! Without it, much of the
Internet we take for granted would be impossible to implement safely (giving credit card info to
retailers, authenticating senders, secure messaging, etc.) as anyone could gather and misuse anyone
else's private information.

In this assignment, you'll be required to implement a number of classical ciphers making use of your
knowledge of abstract classes and inheritance to reduce redundancy whenever possible. Once
completed, you should be able to encode information past the point of any human being able to
easily determine what the input plaintext was!

The course staff would like to reinforce a message commonly said by the security and privacy community:
"Never roll your own crypto". In other words, do not use this assignment in any future applications where
you'd like to encrypt some confidential user information. Classical ciphers are known to be remarkably old and
weak against the capabilities of modern computation and thus anything encrypted with them should not be
considered secure.

Characters in Java

In this assignment, a potentially important note is that behind-the-scenes Java assigns each character
an integer value. (e.g. 'A' is 65, 'a' is 97, and so on). This mapping is defined by the ASCII (the American
Standard Code for Information Interchange) standard, and can be seen in the following ASCII table:

Because Java has this inherent mapping, we are able to perform the exact same operations on
characters as we can on integers. This includes addition 'A' + 'B' = 131 , subtraction 'B' - 'A' =
1 , and boolean expressions 'A' < 'B' = true . We can also easily convert between the integer and
character representations by casting (int)('A') = 65 or (char)(66) = 'B' .

Getting Started

P0_Ciphers.zip

Download starter code:

Breaking It Down
We've crafted a series of sequential development slides, each guiding you through a specific part of
the assignment to eventually build up to our final program. This step-by-step approach is designed to
make the learning process more manageable and less daunting. We recommend taking notes as you
go through each of the slides as well.

Our Recommendation

We strongly recommend using the sequential development slides, especially for this challenging
assignment. It's a step-by-step journey that breaks down the complexity into digestible parts that will
hopefully make it a smoother learning experience!

Full Specification

The next slide is the Full Specification detailing the entire spec of the assignment. Each
developmental slide will also provide the relevant sections of the specification to help in completing
the respective slide. We will build up towards the final Ciphers slide, where you will see all your hard
work come together to complete the full assignment!

WARNING: We've noticed that a majority of students difficulties with this assignment come from not fully
understanding what the spec is asking them to do. Please make sure that you read the description for a
cipher closely before attempting to implement it. If you have any questions about what the spec is asking,
please ask for clarification on Ed!

Full Specification

Expand

System Structure
We will represent ciphers with following provided abstract class. You may modify the constants of
this class to help with debugging your implementations (we recommend starting with a smaller range
like A - G). Expand to see the default Cipher.java file

NOTE: Remember, you should be making use of the class constants within this class rather than
hardcoding character values within your implementations.

import java.util.*;
import java.io.*;

// Represents a classical cipher that is able to encrypt a plaintext into a ciphertext, and
// decrypt a ciphertext into a plaintext. Also capable of encrypting and decrypting entire files
public abstract class Cipher {
 // The minimum character able to be encrypted/decrypted by any cipher
 // (we encourage you to change this value when testing!)
 public static final int MIN_CHAR = (int)('A');

 // The maximum character able to be encrypted/decrypted by any cipher
 // (we encourage you to change this value when testing!)
 public static final int MAX_CHAR = (int)('Z');

 // The total number of characters able to be encrypted/decrypted by any cipher
 // (aka. the total number of characters in the encodable range)
 public static final int TOTAL_CHARS = MAX_CHAR - MIN_CHAR + 1;

 // Behavior: Applies this Cipher's encryption scheme to the file with the
 // given 'fileName', creating a new file to store the results.
 // Exceptions: Throws a FileNotFoundException if a file with the provided 'fileName'
 // doesn't exist
 // Returns: None
 // Parameters: 'fileName' - The name of the file to be encrypted. Should be non-null.
 public void encryptFile(String fileName) throws FileNotFoundException {
 fileHelper(fileName, true, "-encrypted");
 }

 // Behavior: Applies the inverse of this Cipher's encryption scheme to the file with the
 // given 'fileName' (reversing a single round of encryption if previously applied)
 // creating a new file to store the results.
 // Exceptions: Throws a FileNotFoundException if a file with the provided 'fileName'
 // doesn't exist
 // Returns: None

 // Parameters: 'fileName' - The name of the file to be decrypted. Should be non-null.
 public void decryptFile(String fileName) throws FileNotFoundException {
 fileHelper(fileName, false, "-decrypted");
 }

 // Behavior: Reads from an input file with 'fileName', either encrypting or decrypting
 // depending on 'encrypt', printing the results to a new file with 'suffix'
 // appended to the input file's name
 // Exceptions: Throws a FileNotFoundException if a file with the provided 'fileName'
 // doesn't exist
 // Returns: None
 // Parameters: 'fileName' - the name of the file to be encrypted / decrypted. Should be
 // non-null.
 // 'encrypt' - whether or not encryption should occur
 // 'suffix' - appended to the fileName when creating the output file. Should be
 // non-null.
 private void fileHelper(String fileName, boolean encrypt, String suffix)
 throws FileNotFoundException {
 Scanner sc = new Scanner(new File(fileName));
 String out = fileName.split("\\.txt")[0] + suffix + ".txt";
 PrintStream ps = new PrintStream(out);
 while(sc.hasNextLine()) {
 String line = sc.nextLine();
 ps.println(encrypt ? encrypt(line) : decrypt(line));
 }
 }

 // Behavior: Applies this Cipher's encryption scheme to 'input', returning the result
 // Exceptions: None
 // Returns: The result of applying this Cipher's encryption scheme to `input`
 // Parameters: 'input' - the string to be encrypted. Should be non-null and all characters of
 // 'input' should be within the encodable range.
 public abstract String encrypt(String input);

 // Behavior: Applies this inverse of this Cipher's encryption scheme to 'input' (reversing
 // a single round of encryption if previously applied), returning the result
 // Exceptions: None
 // Returns: The result of applying the inverse of this Cipher's encryption scheme to `input`
 // Parameters: 'input' - the string to be encrypted. Should be non-null and all characters of
 // 'input' should be within the encodable range.
 public abstract String decrypt(String input);
}

Required Operations
You must implement the following encryption schemes in this assignment. Note that the following
descriptions often refer to the "encodable/encryptable range," which is defined by the
Cipher.MIN_CHAR (lowest value in the range), Cipher.MAX_CHAR (highest value in the range), and
Cipher.TOTAL_CHARS (total number of characters within the range) constants within Cipher.java

Expand

HINT: Check out the "Swap: Example Ciphers" slide for an example implementation of a Cipher!

Substitution.java

The Substitution Cipher is likely the most commonly known encryption algorithm. It consists of
assigning each input character a unique output character, ideally one that differs from the original,
and replacing all characters from the input with the output equivalent when encrypting (and vice-
versa when decrypting).

In our implementation, this mapping between input and output will provided via a shifter
string. The shifter will represent the output characters corresponding to the input character at
the same relative position within the overall range of encodable characters (defined by
Cipher.MIN_CHAR and Cipher.MAX_CHAR). To picture this, we can vertically align this shifter
string with the encodable range and look at the corresponding columns to see the appropriate
character mappings.

Here is an example:

In this example, our encodable change are the letters "ABCDEFG". In code, we represent this as all
of the characters between Cipher.MIN_CHAR and Cipher.MAX_CHAR . We line this up with our

given shifter String, which in this case, is "GCBEAFD". This means that the letter A will be
encrypted to the letter G , the letter B encrypts to the letter C , and so on.

Given the shifter string above, the plaintext "FAD" would be encrypted into "FGE" and the
ciphertext "CGE" decrypts into the plaintext "BAD".

NOTE: Notice what really matters here is the position of each character in the encodable range, and the
character at the corresponding location in the shifter String. What are some useful methods or concepts
that can help you map from one character to another?

Required Behavior:
Substitution should extend the provided Cipher.java OR a subclass of Cipher.java and contain
the following constructors / additional instance method:

public Substitution()

Constructs a new Substitution Cipher with an empty shifter.

public Substitution(String shifter)

Constructs a new Substitution Cipher with the provided shifter.
Should throw an IllegalArgumentException if the given shifter meets any of the
following cases:

The length of the shifter doesn't match the number of characters within our Cipher's
encodable range (Cipher.TOTAL_CHARS)
Contains a duplicate character
Any individual character falls outside the encodable range (< Cipher.MIN_CHAR or >
Cipher.MAX_CHAR).

public void setShifter(String shifter)

Updates the shifter for this Substitution Cipher.
Should throw an IllegalArgumentException if the given shifter meets any of the
following cases:

The length of the shifter doesn't match the number of characters within our Cipher's
encodable range (Cipher.TOTAL_CHARS)
Contains a duplicate character
Any individual character falls outside the encodable range (< Cipher.MIN_CHAR or >
Cipher.MAX_CHAR)
public

Since we're allowing clients to set a shifter after construction (via the no-argument constructor and
the setShifter method), encrypt / decrypt should throw an IllegalStateException if the

Expand

shifter was never set:

Substitution a = new Substition();
a.encrypt("BAD"); // Should throw an IllegalStateException since the shifter was never set!

CaesarKey.java

The CaesarKey scheme builds off of the base Substitution Cipher. This one involves placing a key
at the front of the substitution, with the rest of the alphabet following normally (minus the
characters included in the key). This means that the first character in our encodable range ((char)
(Cipher.MIN_CHAR)) would be replaced by the first character within the key. The second character
in the encodable range ((char)(Cipher.MIN_CHAR + 1) would be replaced by the second
character within the key. This process would repeat until there are no more key characters, in
which case the replacing value would instead be the next unused character within the encodable
range.

Consider the following diagram for a visual explanation:

To build the shifter String, notice that we took the key and placed it in the beginning. Then, we go
through the characters in our encodable range and add them if they are not already in the shifter
string. In the following example, note that the shifter string starts with "DEF" (the key) and then is
followed by the encodable range in its original order, excluding characters 'D', 'E', and 'F' as they're
already in the shifter.

After creating the shifter string, the process of encrypting and decrypting should exactly match
that of the Substitution cipher (replace each character of the input with the character at the same
relative position in shifter for encrypting, or vice-versa for decrypting)

Hint: Notice how after creating the shifter String, encrypting and decrypting a given input behaves exactly
the same as Substitution ! Keeping in mind our recently learned concepts, what can we say about the
relationship between the CaesarKey and Substitution ciphers? How can we take advantage of those
similarities to reduce redundancy between these two classes?

At this point, we recommend taking a closer look at the provided example if you haven't done so
already!

Expand

Required Behavior

CaesarKey should extend the provided Cipher.java OR a subclass of Cipher.java and contain
the following constructor:

public CaesarKey(String key)

Constructs a new CaesarKey with the provided key value
This constructor should throw an IllegalArgumentException if the given key meets any
of the following cases:

Is empty
Contains a duplicate character
Any individual character falls outside the encodable range (< Cipher.MIN_CHAR or >
Cipher.MAX_CHAR)
public

WARNING: We are requiring that you do not override encrypt / decrypt methods within CaesarKey . These
should be inherited from a superclass.

CaesarShift.java

This encryption scheme draws inspiration from the Substitution Cipher, except it involves shifting
all encodable characters to the left by some provided shift amount.

Applying the CaesarShift Cipher is defined as replacing each input character with the
corresponding character in shifter at the same relative position. This shifter should be
created by moving all characters within the range to the left shift times, moving the value at the
front to the end each time.

Similarly, inversing the CaesarShift Cipher is defined as replacing each input character with the
corresponding character in the encodable range at the same relative position within shifter . This
shifter should be created by moving all characters within the range to the left shift times,
moving the value at the front to the end each time.

For example,if the shift is 1, any character c would be replaced with (char)(c + 1) when
encrypting. If shift is two, c would be replaced with (char)(c + 2) . Importantly, if characters
map to a value greater than the maximum encryptable character (think shift=1, (char)
(Cipher.MAX_CHAR) -> (char)(Cipher.MAX_CHAR + 1)) the replacement character should be
found by looping back around to the front of the encodable range (so if shift=1, then (char)
(Cipher.MAX_CHAR) would actually map to (char)(Cipher.MIN_CHAR)).

Consider the following diagram for a visual explanation:

Note that this diagram outlines the process of creating shifter in which we physically move the
character at the front of the encodable range to the end (and in doing so shift all other characters
to the left). As the shift value above is just one, this process is repeated one time. If the shift value
was two, we'd do it twice.

HINT: What data structure would help with this process of removing from the front and adding to the
back?

HINT: Notice that after creating the shifter String, encrypting and decrypting a given input behaves exactly
the same as Substitution ! Keeping in mind our recently learned concepts, what can we say about the
relationship between CaesarShift and Substitution ? How can we take advantage of those similarities
to reduce redundancy between these two classes?

After creating the shifter string, the process of encrypting / decrypting should exactly match that
of the Substitution cipher (replace each character of the input with the character at the same
relative position in shifter for encrypting, or vice-versa for decrypting).

Required Behavior:

Expand

CaesarShift should extend the provided Cipher.java OR a subclass of Cipher.java and contain
the following constructor:

public CaesarShift(int shift)

Constructs a new CaesarShift with the provided shift value
An IllegalArgumentException should be thrown in the case that shift <= 0

WARNING: We are requiring that you do not override encrypt / decrypt methods within CaesarKey . These
should be inherited from a superclass.

MultiCipher.java

The above ciphers are interesting, but on their own they're pretty solvable. A more complicated
approach would be to chain these ciphers together to confuse any possible adversaries! This can
be accomplished by passing the original input through a list of ciphers one at a time, using the
previous cipher's output as the input to the next. Repeating this through the entire list results in
the final encrypted string. Decrypting would then involve the opposite of this: starting with the last
cipher and working backward through the cipher list until the plaintext is revealed.

Below is a diagram of these processes, passing inputs through each layer of the cipher list.
Consider the following diagram demonstrating the process of encrypting/decrypting a MultiCipher
consisting of 3 internal ciphers: a SwapCipher with arguments 'A' and 'B', a CaesarKey with key
"BAG", and a CaesarShift of 4.

NOTE: In this example, the encodabe range is A - G

On the left in the above example, we start with the plaintext: CABBAGE hoping to encrypt it.
Encrypting this through the first layer (a SwapCipher with arguments 'A' and 'B') results in the
intermediary encrypted message CBAABGE . This intermediary value is then used as input to the
next layer (a CaesarKey with key "BAG") resulting in the second intermediary encrypted message
GABBAFD . This process is repeated one last time, resulting in the final ciphertext of KEFFEJH .

On the right in the above example, we start at the ciphertext: JEJJHG hoping to decrypt it.
Decrypting this through the last layer (a CaesarShift of 4) results in the intermediary still-encrypted
message FAFFDC . This intermediary value is then used as input to the next layer (a CaesarKey with
key "BAG") resulting in the second intermediary still-encrypted message GBGGED . This process is
repeated one last time, resulting in the final plaintext of GAGGED .

This is what you'll be implementing in this class: given a list of ciphers, apply them in order to
encrypt or in reverse order to decrypt a given message.

Required Behavior:
MultiCipher should extend the provided Cipher.java OR a subclass of Cipher.java and contain
the following constructor:

public MultiCipher(List<Cipher> ciphers)

Constructs a new MultiCipher with the provided List of Ciphers
You may assume that any Cipher in the list is non-null and calling encrypt / decrypt
will not throw an IllegalStateException .

Should throw an IllegalArgumentException if the given list is null

Use Your Ciphers!
Now that you're done, set Cipher.MIN_CHAR = (int)(' ') and Cipher.MAX_CHAR = (int)('}') .
Then, using the Client class create a MultiCipher consisting of the following: a CaesarShift(4) , a
CaesarKey("123") , a CaesarShift(12) , and a CaesarKey("lemon") . Decrypt the following!

Yysu(zer(vyly xylw("m(!xy (q ywl}ul!)(Oyt(&e"({le$($xq!(!xy (}u qwu($q (ruvenu(tusn&m!ylwJ(E1

Once you've figured it out, revert MIN_CHAR = (int)('A') and MAX_CHAR = (int)('Z') for the
testing portion of the assignment

Testing
You are welcome to use the provided Client.java to test and debug your cipher implementations.
To do so, make sure to change the CHOSEN_CIPHER constant to the cipher you're testing before hitting
run. You are also encouraged to modify the constants in Cipher.java such that a smaller subset of
characters are used by your cipher.

You'll be required to finish the 3 unimplemented tests in Testing.java : one for CaesarKey , one for
CaesarShift , and one for MultiCipher . Follow the steps outlined in the comments within each
method for more guidance.

WARNING: We've provided you a test that checks if your Testing.java file compiles and no tests fail. It does
not check that the appropriate updates were made according to the comments within the file. It is your
responsibility to make sure that you're updating the file correctly.

� Implementation Guidelines
As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements and hints:

Each type of Cipher should be represented by a class that extends the Cipher class (or a
subclass of Cipher). You should not modify Cipher . You should utilize inheritance to
capture common behavior among similar cipher types and eliminate as much redundancy
between classes as possible.
You should make all of your fields private and you should reduce the number of fields only to
those that are necessary for solving the problem.

Each of your fields should be initialized inside of your constructor(s).
You should comment your code following the Commenting Guide. You should write comments
with basic info (a header comment at the top of your file), a class comment for every class, and
a comment for every method other than main.

Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.

Spec Walkthrough

NOTE: This walkthrough was created for a previous iteration of this assignment. You might notice that things
are slightly different (Concealment changed into Swap, and there is no more Creative Extension). A good
majority of the assignment is the same which is why we're still using it, but if you have any questions please let
us know!

Swap: Example Ciphers

Expand

Sample implementations with annotations for MultiSwapCipher and SwapCipher have been
provided so you can see how certain implementation choices might be made. These should have
been covered in-depth in section, so hopefully they are somewhat familiar! The only major difference
is that the Cipher interface has been converted into an abstract class such that files are able to be
encrypted / decrypted as well.

MultiSwapCipher

This encryption scheme takes in a list of characters with which to "swap" while encrypting. For a
better idea of what this looks like, imagine the following list of swaps ['A', 'B', 'C'] . When
encrypting, this means we would swap all As to Bs, Bs to Cs, and Cs to As in our ciphertext. When
decrypting, we would do the reverse: As become Cs, Cs become Bs, and Bs become As such that
we end up with the same plaintext.

Required Behavior
MultiSwapCipher should extend the provided Cipher.java OR a subclass of Cipher.java and
contain the following constructor / additional instance method:

public MultiSwapCipher()

Constructs a MultiSwapCipher with no set swaps

public MultiSwapCipher(List<Character> swaps)

Constructs a MultiSwapCipher using the provided list to determine which characters to swap
with one another.
An IllegalArgumentException should be thrown in the following cases:

There are < 2 elements within the list (as no encryption would occur)
Any of the characters in the list fall outside the encodable range

public void setSwaps(List<Character> swaps)

Updates the swap list for this MultiSwapCipher
An IllegalArgumentException should be thrown in the following cases:

There are < 2 elements within the list (as no encryption would occur)
Any of the characters in the list fall outside the encodable range

Expand

Since we're allowing clients to set swaps after construction (via the no-argument constructor and
the setSwaps method), encrypt / decrypt should throw an IllegalStateException if the
swaps were never set:

Cipher a = new MultiSwapCipher();
a.encrypt("BAD"); // Should throw an IllegalStateException since the swaps were never set!

SwapCipher

This encryption is a simplified version of the one described above where we only ever swap two
characters. For a better idea of what this looks like, imagine the following swaps 'A' and 'B'
When encrypting, this means we would swap all As to Bs and Bs to As in our ciphertext. When
decrypting, we would do the reverse: Bs become As and As become Bs such that we end up with
the same plaintext.

HINT: Note that this process would exactly match that of MultiSwapCipher given a list with two
characters! Keeping in mind our recently learned concepts, what can we say about the relations
between SwapCipher and MultiSwapCipher ? How can we take advantage of those similarities to reduce
redundancy between these two classes?

Required Behavior
SwapCipher should extend the provided Cipher.java OR a subclass of Cipher.java and contain
the following constructor:

public SwapCipher(char a, char b)

Constructs a new SwapCipher with the provided characters to swap
An IllegalArgumentException should be thrown in the case that either of the characters
falls outside the encodable range

Test It
To test this Cipher and any others, you may run the provided Client.java file. If you wanted to test
one of the swap ciphers, you could change the CHOSEN_CIPHER on line 6 to be a MultiSwapCipher /
SwapCipher object with appropriate swaps. For example, in the following line, our chosen cipher is
the MultiSwapCipher cipher with swaps of [A, B, C].

public static final Cipher CHOSEN_CIPHER = new MultiSwapCipher(List.of('A', 'B',

'C'));

Then, you can hit run and try your own inputs! You can also write JUnit tests within the provided
Testing.java file.

Substitution

All required files can be found on the Getting Started slide

WARNING: This slide is NOT graded

Slide Overview
Welcome to the first step, where you will be implementing one of the required files,
Substitution.java !

Note that the following descriptions often refer to the "encodable/encryptable range," which is
defined by the Cipher.MIN_CHAR (lowest value in the range), Cipher.MAX_CHAR (highest value in the
range), and Cipher.TOTAL_CHARS (total number of characters within the range) constants within
Cipher.java

Substitution.java
The Substitution Cipher is likely the most commonly known encryption algorithm. It consists of
assigning each input character a unique output character, ideally one that differs from the original,
and replacing all characters from the input with the output equivalent when encrypting (and vice-
versa when decrypting).

In our implementation, this mapping between input and output will provided via a shifter string.
The shifter will represent the output characters corresponding to the input character at the same
relative position within the overall range of encodable characters (defined by Cipher.MIN_CHAR and
Cipher.MAX_CHAR). To picture this, we can vertically align this shifter string with the encodable
range and look at the corresponding columns to see the appropriate character mappings.

Here is an example:

In this example, our encodable change are the letters "ABCDEFG". In code, we represent this as all of
the characters between Cipher.MIN_CHAR and Cipher.MAX_CHAR . We line this up with our given
shifter String, which in this case, is "GCBEAFD". This means that the letter A will be encrypted to
the letter G , the letter B encrypts to the letter C , and so on.

Given the shifter string above, the plaintext "FAD" would be encrypted into "FGE" and the ciphertext
"CGE" decrypts into the plaintext "BAD".

HINT: Notice what really matters here is the position of each character in the encodable range, and the
character at the corresponding location in the shifter String. What are some useful methods or concepts that
can help you map from one character to another?

Required Behavior:
Substitution should extend the provided Cipher.java OR a subclass of Cipher.java and contain
the following constructors / additional instance method:

public Substitution()

Constructs a new Substitution Cipher with an empty shifter.

public Substitution(String shifter)

Constructs a new Substitution Cipher with the provided shifter.
Should throw an IllegalArgumentException if the given shifter meets any of the following
cases:

The length of the shifter doesn't match the number of characters within our Cipher's
encodable range (Cipher.TOTAL_CHARS)
Contains a duplicate character
Any individual character falls outside the encodable range (< Cipher.MIN_CHAR or >
Cipher.MAX_CHAR).

public void setShifter(String shifter)

Updates the shifter for this Substitution Cipher.
Should throw an IllegalArgumentException if the given shifter meets any of the following
cases:

The length of the shifter doesn't match the number of characters within our Cipher's
encodable range (Cipher.TOTAL_CHARS)
Contains a duplicate character
Any individual character falls outside the encodable range (< Cipher.MIN_CHAR or >
Cipher.MAX_CHAR)
public

Since we're allowing clients to set a shifter after construction (via the no-argument constructor and
the setShifter method), encrypt / decrypt should throw an IllegalStateException if the
shifter was never set:

Substitution a = new Substition();
a.encrypt("BAD"); // Should throw an IllegalStateException since the shifter was never set!

Once you've successfully passed the tests for this slide:

Download your Substitution.java file and upload it to the next slide, CaesarKey.java. Note that
this slide is not graded. However, we recommend that you do not move on to the rest of the
program until you have passed all tests in this slide.

CaesarKey

All required files can be found on the Getting Started slide

WARNING: This slide is NOT graded

Slide Overview
Welcome to the next step! Here is where all the inheritance you've been learning over the past week
comes into play. As you read through this specification, take note of the behavioral similarities
between Substitution.java and CaesarKey.java

CaesarKey.java
The CaesarKey scheme builds off of the base Substitution Cipher. This one involves placing a key at
the front of the substitution, with the rest of the alphabet following normally (minus the characters
included in the key). This means that the first character in our encodable range ((char)
(Cipher.MIN_CHAR)) would be replaced by the first character within the key. The second character in
the encodable range ((char)(Cipher.MIN_CHAR + 1) would be replaced by the second character
within the key. This process would repeat until there are no more key characters, in which case the
replacing value would instead be the next unused character within the encodable range.

Consider the following diagram for a visual explanation:

To build the shifter String, notice that we took the key and placed it in the beginning. Then, we go
through the characters in our encodable range and add them if they are not already in the shifter
string. In the following example, note that the shifter string starts with "DEF" (the key) and then is
followed by the encodable range in its original order, excluding characters 'D', 'E', and 'F' as they're
already in the shifter.

After creating the shifter string, the process of encrypting and decrypting should exactly match that of
the Substitution cipher (replace each character of the input with the character at the same relative
position in shifter for encrypting, or vice-versa for decrypting)

HINT: Notice that after creating the shifter String, encrypting and decrypting a given input behaves exactly the
same as Substitution ! Keeping in mind our recently learned concepts, what can we say about the
relationship between the CaesarKey and Substitution ciphers? How can we take advantage of those
similarities to reduce redundancy between these two classes?

At this point, we recommend taking a closer look at the provided example if you haven't done so
already!

Required Behavior
CaesarKey should extend the provided Cipher.java OR a subclass of Cipher.java and contain the
following constructor:

public CaesarKey(String key)

Constructs a new CaesarKey with the provided key value
This constructor should throw an IllegalArgumentException if the given key meets any of
the following cases:

Is empty
Contains a duplicate character
Any individual character falls outside the encodable range (< Cipher.MIN_CHAR or >
Cipher.MAX_CHAR)
public

WARNING: We are requiring that you do not override encrypt / decrypt methods within CaesarKey . These
should be inherited from a superclass.

Once you've successfully passed the tests for this slide:

Download your Substitution.java and CaesarKey.java files and upload them to the next slide,
CaesarShift.java. Note that this slide is not graded. However, we recommend that you do not
move on to the rest of the program until you have passed all tests in this slide.

CaesarShift

All required files can be found on the Getting Started slide

WARNING: This slide is NOT graded

CaesarShift.java
This encryption scheme draws inspiration from the Substitution Cipher, except it involves shifting all
encodable characters to the left by some provided shift amount.

Applying the CaesarShift Cipher is defined as replacing each input character with the corresponding
character in shifter at the same relative position. This shifter should be created by moving all
characters within the range to the left shift times, moving the value at the front to the end each
time.

Similarly, inversing the CaesarShift Cipher is defined as replacing each input character with the
corresponding character in the encodable range at the same relative position within shifter . This
shifter should be created by moving all characters within the range to the left shift times, moving
the value at the front to the end each time.

For example, if the shift is 1, any character c would be replaced with (char)(c + 1) when
encrypting. If shift is two, c would be replaced with (char)(c + 2) . Importantly, if characters map
to a value greater than the maximum encryptable character (think shift=1, (char)(Cipher.MAX_CHAR)
-> (char)(Cipher.MAX_CHAR + 1)) the replacement character should be found by looping back
around to the front of the encodable range (so if shift=1, then (char)(Cipher.MAX_CHAR) would
actually map to (char)(Cipher.MIN_CHAR)).

Consider the following diagram for a visual explanation:

Note that this diagram outlines the process of creating shifter in which we physically move the
character at the front of the encodable range to the end (and in doing so shift all other characters to
the left). As the shift value above is just one, this process is repeated one time. If the shift value was
two, we'd do it twice.

HINT: What data structure would help with this process of removing from the front and adding to the back?

HINT: Notice that after creating the shifter String, encrypting and decrypting a given input behaves exactly the
same as Substitution ! Keeping in mind our recently learned concepts, what can we say about the
relationship between CaesarShift and Substitution ? How can we take advantage of those similarities to
reduce redundancy between these two classes?

After creating the shifter string, the process of encrypting / decrypting should exactly match that of
the Substitution cipher (replace each character of the input with the character at the same relative
position in shifter for encrypting, or vice-versa for decrypting).

Required Behavior:

CaesarShift should extend the provided Cipher.java OR a subclass of Cipher.java and contain the
following constructor:

public CaesarShift(int shift)

Constructs a new CaesarShift with the provided shift value
An IllegalArgumentException should be thrown in the case that shift <= 0

WARNING: We are requiring that you do not override encrypt / decrypt methods within CaesarKey . These
should be inherited from a superclass.

Once you've successfully passed the tests for this slide:

Download your Substitution.java , CaesarKey.java and CaesarShift.java files and upload
them to the next slide, MultiCipher.java. Note that this slide is not graded. However, we
recommend that you do not move on to the rest of the program until you have passed all tests in this
slide.

MultiCipher

All required files can be found on the Getting Started slide

WARNING: This slide is NOT graded

MultiCipher.java
The above ciphers are interesting, but on their own they're pretty solvable. A more complicated
approach would be to chain these ciphers together to confuse any possible adversaries! This can be
accomplished by passing the original input through a list of ciphers one at a time, using the previous
cipher's output as the input to the next. Repeating this through the entire list results in the final
encrypted string. Decrypting would then involve the opposite of this: starting with the last cipher and
working backward through the cipher list until the plaintext is revealed.

Below is a diagram of these processes, passing inputs through each layer of the cipher list. Consider
the following diagram demonstrating the process of encrypting/decrypting a MultiCipher consisting
of 3 internal ciphers: a CaesarShift of 4, a CaesarKey with key "BAG", and a CaesarShift of 8.

NOTE: In this example, the encodabe range is A - G

On the left in the above example, we start with the plaintext: CABBAGE hoping to encrypt it.
Encrypting this through the first layer (a SwapCipher with arguments 'A' and 'B') results in the
intermediary encrypted message CBAABGE . This intermediary value is then used as input to the next
layer (a CaesarKey with key "BAG") resulting in the second intermediary encrypted message GABBAFD .
This process is repeated one last time, resulting in the final ciphertext of KEFFEJH .

On the right in the above example, we start at the ciphertext: JEJJHG hoping to decrypt it. Decrypting
this through the last layer (a CaesarShift of 4) results in the intermediary still-encrypted message
FAFFDC . This intermediary value is then used as input to the next layer (a CaesarKey with key "BAG")
resulting in the second intermediary still-encrypted message GBGGED . This process is repeated one
last time, resulting in the final plaintext of GAGGED .

This is what you'll be implementing in this class: given a list of ciphers, apply them in order to encrypt
or in reverse order to decrypt a given message.

Required Behavior:
MultiCipher should extend the provided Cipher.java OR a subclass of Cipher.java and contain
the following constructor:

public MultiCipher(List<Cipher> ciphers)

Constructs a new MultiCipher with the provided List of Ciphers
You may assume that any Cipher in the list is non-null and calling encrypt / decrypt will
not throw an IllegalStateException .

Should throw an IllegalArgumentException if the given list is null

Once you've successfully passed the tests for this slide:

Download your Substitution.java , CaesarKey.java , CaesarShift.java , and MultiCipher.java
files and upload them to the next slide, � Ciphers �. Note that this slide is not graded. However,
we recommend that you do not move on to the rest of the program until you have passed all tests in
this slide.

� Ciphers �

All required files can be found on the Getting Started slide

WARNING: This slide IS graded

Write/Upload your implementations to Substitution.java , CaesarShift.java , CaesarKey.java ,
and MultiCipher.java here! Remember that implementations for all of these are required for this
assignment.

Use Your Ciphers!
Now that you're done, set Cipher.MIN_CHAR = (int)(' ') and Cipher.MAX_CHAR = (int)('}') .
Then, using the Client class create a MultiCipher consisting of the following: a CaesarShift(4) , a
CaesarKey("123") , a CaesarShift(12) , and a CaesarKey("lemon") . Decrypt the following!

Yysu(zer(vyly xylw("m(!xy (q ywl}ul!)(Oyt(&e"({le$($xq!(!xy (}u qwu($q (ruvenu(tusn&m!ylwJ(E1

Once you've figured it out, revert MIN_CHAR = (int)('A') and MAX_CHAR = (int)('Z') for the
testing portion of the assignment

Testing
You are welcome to use the provided Client.java to test and debug your cipher implementations.
To do so, make sure to change the CHOSEN_CIPHER constant to the cipher you're testing before hitting
run. You are also encouraged to modify the constants in Cipher.java such that a smaller subset of
characters are used by your cipher.

You'll be required to finish the 3 unimplemented tests in Testing.java : one for CaesarKey , one for
CaesarShift , and one for MultiCipher . Follow the steps outlined in the comments within each
method for more guidance.

WARNING: We've provided you a test that checks if your Testing.java file compiles and no tests fail. It does
not check that the appropriate updates were made according to the comments within the file. It is your
responsibility to make sure that you're updating the file correctly.

� Implementation Guidelines
As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements and hints:

Each type of Cipher should be represented by a class that extends the Cipher class (or a
subclass of Cipher). You should not modify Cipher . You should utilize inheritance to
capture common behavior among similar cipher types and eliminate as much redundancy
between classes as possible.
You should make all of your fields private and you should reduce the number of fields only to
those that are necessary for solving the problem.
Each of your fields should be initialized inside of your constructor(s).
You should comment your code following the Commenting Guide. You should write comments
with basic info (a header comment at the top of your file), a class comment for every class, and
a comment for every method other than main.

Make sure to avoid including implementation details in your comments. In particular, for
your object class, a client should be able to understand how to use your object effectively
by only reading your class and method comments, but your comments should maintain
abstraction by avoiding implementation details.

Reflection

Question 1

No response

Question 2

No response

Question 3

The following questions will ask that you practice metacognition to reflect on the topics covered on
this assignment and your experience completing it. For each question, focus on your plan and/or
process for working through the assignment along with the CS concepts. Think about things like how
you organized your working time, what sorts of things tended to go wrong, and how you dealt with
those errors or mistakes.

Please answer all questions.

Describe the inheritance hierarchy you chose to create. Which classes extended which other classes?
Why did you make those choices?

Describe how you went about testing your implementation. What specific situations and/or test cases
did you consider? Why were those cases important?

The next 4 questions will require you reflect on privacy, encryption and a few ethical complications.
Start by watching the following video (8m 12s):

An error occurred.

Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser.

No response

Question 4

No response

Question 5

No response

Question 6

No response

Question 7

No response

(https://youtu.be/jkV1KEJGKRA)

Describe the difference between "encryption in transit" (involving and) and "end-to-end
encryption" (involving) as described in the video.

K AS K BS

K AB

In 2015, there was a rather infamous court case resulting from the US government mandating Apple
extract encrypted data from criminals' devices. These included devices Apple had no ability to crack
with their current tooling; thus, Apple was ordered to develop new software that would enable this
decryption to occur.

The most well-known example involved unlocking the phone of a terrorist involved in a shooting that
killed 14 and injured 22. The government hoped that unlocking the phone would prevent future
terrorist attacks. With this context, do you believe this to be a fair request?

Now, apply what was mentioned in the video - that there's no such thing as a safe backdoor - to this
situation. Alternatively stated, should Apple create cracking software (and prove its existence) it's
possible a non-government entity could obtain and misuse it.

Does this perspective change your answer to the previous question? How would you feel if software
capable of decrypting any and all private information on your devices existed?

Having answered the above questions, do you believe it's necessary to sacrifice privacy for the
"greater good" / safety of modern society? Why or why not?

What skills did you learn and/or practice with working on this assignment?

Question 8

No response

Question 9

No response

Question 10

No response

Question 11

No response

Question 12

No response

What did you struggle with most on this assignment?

What questions do you still have about the concepts and skills you used in this assignment?

About how long (in hours) did you spend on this assignment? (Feel free to estimate, but try to be
close.)

Was any part of the specification or requirements unclear? If so, which part(s), how was it unclear,
and how could it have been made more clear?

[OPTIONAL] Do you have any other feedback, questions, or comments about this assignment?

(Note that we may not be able to respond to questions here, so please post on the message board if
you would like a response!)

� Final Submission �

Question

No response

� Final Submission�
Fill out the box below and click "Submit" in the upper-right corner of the window to submit your
work.

I attest that the work I am about to submit is my own and was completed according to the course
Academic Honesty and Collaboration policy. If I collaborated with any other students or utilized any
outside resources, they are allowed and have been properly cited. If I have any concerns about this
policy, I will reach out to the course staff to discuss before submitting.

(Type "yes" as your response.)

Diagrams

https://docs.google.com/presentation/d/1nVrI0AYpn_LckCgJnsHw9uOxmKc5Z6lCasggFfXhJFM/edit?
usp=sharing

[Scaffold] Ciphers

Write Implementations to Substitution.java , CaesarShift.java , CaesarKey.java , and
MultiCipher.java here! Remember that implementations for all of these are required for this
assignment.

