
CSE 123 Autumn 2024LEC 04: Linked Nodes

CSE 123
L E C 0 4

Questions during Class?

Raise hand or send here

sli.do #cse123

Linked Nodes

Talk to your neighbors:

What’s your favorite
data structure to use?

BEFORE WE START

Instructor: James Wilcox

CSE 123 Autumn 2024LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x 10 y

CSE 123 Autumn 2024LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x 10 y 10

CSE 123 Autumn 2024LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x 10 y 11

CSE 123 Autumn 2024LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x y 0 0 0 0 0

CSE 123 Autumn 2024LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x y 0 0 0 0 0

CSE 123 Autumn 2024LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++; // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++; // x[0] changed

x y 1 0 0 0 0

CSE 123 Autumn 2024LEC 04: Linked Nodes

More trains!

CSE 123 Autumn 2024LEC 04: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.

Memory

CSE 123 Autumn 2024LEC 04: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- int[] arr = new int[10];

Memory

arr

CSE 123 Autumn 2024LEC 04: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- int[] arr = new int[10];

Memory

arr

We call this “contiguous” memory

CSE 123 Autumn 2024LEC 04: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- EngineCar engine = new EngineCar(“Empire Builder”, 10,

 new SleeperCar(10));
Memory

engine

CSE 123 Autumn 2024LEC 04: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- EngineCar engine = new EngineCar(“Empire Builder”, 10,

 new SleeperCar(10));
Memory

engine

CSE 123 Autumn 2024LEC 04: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- EngineCar engine = new EngineCar(“Empire Builder”, 10,

 new SleeperCar(10));
Memory

engine

CSE 123 Autumn 2024LEC 04: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- EngineCar engine = new EngineCar(“Empire Builder”, 10,

 new SleeperCar(10));
Memory

engine

We call this “non-contiguous” memory

CSE 123 Autumn 2024LEC 04: Linked Nodes

Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.

• Contiguous memory = impossible to resize directly
- Surrounding stuff in memory (we can’t just overwrite)

- Best we can manage is get more space and copy

• Non-contiguous memory = easy to resize
- Just get some more memory and link it to the rest

• Is it possible to create a non-contiguous List implementation?
- Could make the resizing / shifting problems easier…

CSE 123 Autumn 2024LEC 04: Linked Nodes

Linked Nodes

CSE 123 Autumn 2024LEC 04: Linked Nodes

Linked Nodes

• We want to chain together ints “non-contiguously”
- A bunch of train cars where each is responsible for a single integer

• Accomplish this with nodes we link together
- Each node stores an int (data) and an reference to the next node (next)

data next

node

CSE 123 Autumn 2024LEC 04: Linked Nodes

ListNode

• Java class representing a “node”

• Two fields to store discussed state:
- Fields are public?! We’ll come back to this

• Why can ListNode be a field in the ListNode class?

public class ListNode {
 public int data;
 public ListNode next;
}

CSE 123 Autumn 2024LEC 04: Linked Nodes

Iterating over ListNodes

• General pattern iteration code will follow:

ListNode curr = front;
while (curr != null) {
 // Do something

 curr = curr.next;
}

	Default Section
	Slide 1: Linked Nodes
	Slide 2: Reference Semantics
	Slide 3: Reference Semantics
	Slide 4: Reference Semantics
	Slide 5: Reference Semantics
	Slide 6: Reference Semantics
	Slide 7: Reference Semantics
	Slide 8: More trains!
	Slide 9: Contiguous vs. Non-contiguous
	Slide 10: Contiguous vs. Non-contiguous
	Slide 11: Contiguous vs. Non-contiguous
	Slide 12: Contiguous vs. Non-contiguous
	Slide 13: Contiguous vs. Non-contiguous
	Slide 14: Contiguous vs. Non-contiguous
	Slide 15: Contiguous vs. Non-contiguous
	Slide 16: Contiguous vs. Non-contiguous
	Slide 17: Linked Nodes
	Slide 18: Linked Nodes
	Slide 19: ListNode
	Slide 20: Iterating over ListNodes

