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Questions during Class?

Raise hand or send here

sli.do    #cse123 

Linked Nodes

Talk to your neighbors:

What’s your favorite 
data structure to use?

BEFORE WE START

Instructor: James Wilcox
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Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x 10 y



CSE 123 Autumn 2024LEC 04: Linked Nodes

Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x 10 y 10
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Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x 10 y 11
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Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x y 0 0 0 0 0
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Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x y 0 0 0 0 0
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Reference Semantics

• In Java, variables are treated two different ways:

• We often draw “reference diagrams” to keep track of everything

Value Semantics Reference Semantics

Primitive types (int, double, boolean) + Strings Object types (int[], Scanner, ArrayList)

Values stored locally Values stored in memory, reference stored locally

Initialization copies value (many copies of value) Initialization copies reference (only one value)

int x = 10;
int y = x;

y++;     // x remains unchanged

int[] x = new int[5];
int[] y = x;

y[0]++;    // x[0] changed

x y 1 0 0 0 0
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More trains!
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Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.

Memory
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Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- int[] arr = new int[10];

Memory

arr
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Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- int[] arr = new int[10];

Memory

arr

We call this “contiguous” memory
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Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- EngineCar engine = new EngineCar(“Empire Builder”, 10,

              new SleeperCar(10));
Memory

engine
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Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.
- EngineCar engine = new EngineCar(“Empire Builder”, 10,

              new SleeperCar(10));
Memory

engine

We call this “non-contiguous” memory
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Contiguous vs. Non-contiguous

• Computer memory = one really, really big array.

• Contiguous memory = impossible to resize directly
- Surrounding stuff in memory (we can’t just overwrite)

- Best we can manage is get more space and copy

• Non-contiguous memory = easy to resize
- Just get some more memory and link it to the rest

• Is it possible to create a non-contiguous List implementation?
- Could make the resizing / shifting problems easier…
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Linked Nodes
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Linked Nodes

• We want to chain together ints “non-contiguously”
- A bunch of train cars where each is responsible for a single integer

• Accomplish this with nodes we link together
- Each node stores an int (data) and an reference to the next node (next)

data next

node



CSE 123 Autumn 2024LEC 04: Linked Nodes

ListNode

• Java class representing a “node”

• Two fields to store discussed state:
- Fields are public?! We’ll come back to this

• Why can ListNode be a field in the ListNode class?

public class ListNode {
    public int data;
    public ListNode next;
}
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Iterating over ListNodes

• General pattern iteration code will follow:

ListNode curr = front;
while (curr != null) {
    // Do something
    
    curr = curr.next;
}
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