YA/ UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Autumn 2024

Talk to your neighbors:

What’s your favorite English word?

CSE 123

What page is it on in the dictionary?

Binary Search Trees

Instructor: James Wilcox

Raise hand or send here

sli.do #csel23

YA/ UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Autumn 2024

Announcements
* Quiz 2 Completed! () €D

- Congrats!

YA/ UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Autumn 2024

Binary Trees [Review]

* We'll say that any Binary Tree falls into one of the following categories:

null

Tree Tree

Empty tree Node w/ two subtrees

root == null root != null
root.left / root.right = Tree

This is a recursive definition! A tree is either empty or a node with two
more trees!

YA/ UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Autumn 2024

Binary Search Trees (BSTs)

 We'll say that any Binary Search Tree falls into the following categories:

null

< X

Tree Tree

> X

Empty tree Node w/ two subtrees

root == null root != null
root.left / root.right = Tree

max(root.left) < x & & min(root.right) > x

Note that not all Binary Trees are Binary Search Trees

YA/ UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Autumn 2024

Why BSTs?

* Our IntTree implementation to contains(int value)

private boolean contains(int value, IntTreeNode root) {
if (root == null) {
return false;

} else {
return root.data == value ||
contains(value, root.left) ||
contains(value, root.right);
}

}
 Which direction(s) do we travel if root.data != value?
- Both left and right

* In a Binary Search Tree, should we check both sides?

- Remember, additional constraint: max(root.left) < root.data &&
min(root.right) > root.data

YA/ UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Autumn 2024

BSTs & Runtime

 Contains operation on a balanced BST runsin 0(log(n))
- Leverages removing half of the values at each step
- New runtime class unlocked!

(Horrible| (Bad| |Fair||Good| [EXEETIERE)
O(n”2)

O(n!) [O2%n)

O(n log n)

Operations

O(n)

Oflog), O(1)

Elements

YA/ UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Autumn 2024

BSTs & Runtime

 Contains operation on a balanced BST runsin 0(1log(N))
- Leverages removing half of the values at each step
- New runtime class unlocked!

 Comparison between data structures:

ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) 0(log(N))

* Let’s verify that this is true!

YA/ UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Autumn 2024

BSTs & Runtime

 Contains operation on a balanced BST runsin 0(1log(N))
- Leverages removing half of the values at each step
- New runtime class unlocked!

 Comparison between data structures:

ArrayIntList LinkedIntList IntSearchTree

contains(x) O(N) O(N) O(N)

* Let’s verify that this is true!

O(Log(N)) runtime is only guaranteed for BALANCED BSTs. Since our
tree isn’t balanced, we see O(N) runtime!

YA/ UNIVERSITY of WASHINGTON LEC 16: Binary Search Trees CSE 123 Autumn 2024

BSTs In Java

* Self-balancing BST implementations (AVL / Red-black) exist
- AVL better at contains, Red-black better at adding / removing

* Both the TreeMap / TreeSet implementations use self-balancing BSTs

- Determines said ordering via the Comparable interface / compareTo method
- Printing out shows natural ordering — preorder traversal

* Complete table comparing data structures:

ArrayList | _LinkedList

contains(x) O(N) O(N) 0(log(N))
add (x) 0(1%*) 0(1) O(log(N)*)
remove(Xx) O(N) O(N) O(log(N)*)

*It’s slightly more complicated but we’ll leave that for a higher level course

	Default Section
	Slide 1: Binary Search Trees
	Slide 2: Announcements
	Slide 3: Binary Trees [Review]
	Slide 4: Binary Search Trees (BSTs)
	Slide 5: Why BSTs?
	Slide 6: BSTs & Runtime
	Slide 7: BSTs & Runtime
	Slide 8: BSTs & Runtime
	Slide 9: BSTs In Java

