
CSE 123 Autumn 2024LEC 12: Linked Lists and Recursion

CSE 123
L E C 1 2

Questions during Class?

Raise hand or send here

sli.do #cse123

Linked Lists with
Recursion

Talk to your neighbors:

Best boba in Seattle?

BEFORE WE START

Instructor: James Wilcox

CSE 123 Autumn 2024LEC 12: Linked Lists and Recursion

Announcements
• C2 due tonight 11/6

• R5 due Friday 11/8

• P2 out tomorrow 11/7

• Quiz 1 grades out early next week

• Apply to be a 12X TA!

https://courses.cs.washington.edu/courses/cse14x/ta/

CSE 123 Autumn 2024LEC 12: Linked Lists and Recursion

Linked Lists
• A linked list is either:

Empty list Node w/ another linked list

This is a recursive definition!

A list is either empty or a node with another list!

data next

4 another listnull

CSE 123 Autumn 2024LEC 12: Linked Lists and Recursion

Recursive Traversals w/ LinkedLists
• Guaranteed base case: empty list

- Simplest possible input, should immediately know the return

• Guaranteed public / private pair
- Need to know which sublist you’re currently processing (i.e. curr)

method(one) method(two) method(three) method(null)

1
front

2 3 null

CSE 123 Autumn 2024LEC 12: Linked Lists and Recursion

CSE 123 Autumn 2024LEC 12: Linked Lists and Recursion

Modifying LinkedLists [Review]

• Remember: using a curr variable to iterate over nodes

• Does changing curr actually update our chain?
- What will? Changing curr.next, changing front

- Need to stop one early to make changes

• Often a number of cases to watch out for:
- M(iddle) – Modifying node in the middle of the list (general)

- F(ront) – Modifying the first node

- E(mpty) – What if the list is empty?

- E(nd) – Rare, do we need to do something with the end of the list?

CSE 123 Autumn 2024LEC 12: Linked Lists and Recursion

Modifying LinkedLists Recursively

• Much easier than iterative solutions!

• No longer need to stop one early
- Can go right to the point you’d like to make the change

method(one) method(two) method(three) method(null)

1
front

2 3 null

CSE 123 Autumn 2024LEC 12: Linked Lists and Recursion

Modifying LinkedLists Recursively

• Much easier than iterative solutions!

• No longer need to stop one early
- Can go right to the point you’d like to make the change

• How? Return the updated change and catch it!
- Private pair returns ListNode type

- curr.next = change(curr.next) / front = change(front)

- Resulting solutions much cleaner than iterative cases

• We call this pattern x = change(x)

	Slide 1: Linked Lists with Recursion
	Slide 2: Announcements
	Slide 3: Linked Lists
	Slide 4: Recursive Traversals w/ LinkedLists
	Slide 5
	Slide 6: Modifying LinkedLists [Review]
	Slide 7: Modifying LinkedLists Recursively
	Slide 8: Modifying LinkedLists Recursively

