
CSE 123 Autumn 2024 Review Session Practice Exam

1. Comprehension
Part A: (Select all that apply) Which of these statements are true about runtime?
The runtime of size() in ArrayIntList (from class) is O(n)
The time complexity for a method with two for-loops placed side by side is greater than the time
complexity for a method with one for-loop.
A function with a runtime of O(n2) grows faster than a function with a runtime of O(n) as the input size
increases.
If method2 has an O(n) runtime, and method1 calls method2 n times, then the runtime of method1 is
O(nn)
In Big-Oh notation, only the dominating term matters for complexity because lower-order terms become
insignificant for very large input sizes.

Part B: For each of the following binary trees, indicate which type of traversal is shown: pre-order,
in-order, or post-order.

3 -7 2 10 4 1 5

pre-order

in-order

post-order

23 6 -1 1 7 5 4

pre-order

in-order

post-order

7 3 7 -4 7 7 0

pre-order

in-order

post-order

1



Part C: Consider the following method in the IntTree class:
public int mystery() {

return mystery(overallRoot);

}

private int mystery(IntTreeNode root) {

if (root == null) {

return 0;

}

if (root.left == null && root.right == null) {

return root.data;

}

return mystery(root.left) - mystery(root.right);

}

Draw a binary tree with at least 3 nodes such that, if it were stored in the variable tree, the call to
tree.mystery() would return 10.

Two possible answers (and many others are possible):

2



2. Code Tracing
Part A: For each of the following, draw the linked lists that are produced by starting with the lists shown
on the right and executing the code provided. You only need to draw the final lists, not any intermediate
steps. You do not need to draw any variables created in the code, only the references p1 and p2 in the
original diagram and the nodes they connect to. You should accurately depict any shared nodes.

p1.next = p2.next.next;
p2.next.next = null;

p1.next.next = p2.next;
p2.next = p1.next;

ListNode temp = p1.next;
p1.next = p2.next.next;
temp.next = p2;
p2 = temp;
p2.next.next.next = null;

3



Part B: Consider the following classes:

class Tree {
public void fullName() {

genus();
System.out.println("Tree");

}

public void genus() {
System.out.println("Unknown");

}
}

class Fir extends Tree {
public void genus() {

System.out.println("Abies");
}

}

class GrandFir extends Fir {
public void fullName() {

genus();
System.out.println("Grandis");

}

public void describe() {
super.fullName();
System.out.println("Flat needles");

}
}

class PacificSilverFir extends Fir {
public void fullName() {

System.out.println("Pacific Silver Fir");
}

public void describe() {
fullName();
System.out.println("Beautiful");

}
}

Assume the following variables have been defined:
Tree var1 = new Tree();

Fir var2 = new Fir();

Tree var3 = new GrandFir();

PacificSilverFir var4 = new PacificSilverFir();

For each of the following statements, Indicate what the output would be. If the statement would result in
an error (either a compiler error or an exception), write “error” instead. (You may use a slash to indicate
line breaks. For example, “line1/line2” indicates two lines of output: “line1” and “line2.”)

var1.fullName(); Unknown
Tree

var2.fullName(); Abies
Tree

var3.describe(); error

var4.describe(); Pacific Silver Fir
Beautiful

4



Part C: Consider the following method:
public static void mystery(int n) {

if (n % 2 == 0) {

System.out.print(2);

mystery(n / 2);

} else if (n % 3 == 0) {

System.out.print(3);

mystery(n / 3);

} else if (n % 5 == 0) {

System.out.print(5);

mystery(n / 5);

} else if (n >= 1) {

System.out.print(n);

}

}

For each of the following statements, indicate what the output would be.

mystery(5) 51

mystery(150) 23551

mystery(132) 22311

5



3. Recursion Debugging
Consider a method class called printSeq(List<String> list, int n) that prints all sequences of
strings in list that are of length n. For example, suppose the contents of list are:

list = [“A”, “B”, “C”]

Then, after a call to printSeq(list, 2) is made, the following 6 lines should be printed:

[A, B]

[A, C]

[B, A]

[B, C]

[C, A]

[C, B]

If the length of list is less than n, the code should throw an IllegalArgumentException.

Consider the following incorrect implementation of printSeq:

1 public static void printSeq(List<String> names, int n){

2 if (names.size() < n) {

3 throw new IllegalArgumentException();

4 }

5 printSeq(names, n, new ArrayList<String>());

6 }

7

8

9 private static void printSeq(List<String> strs, int n, List<String> curr){

10 if (curr.size() == n) {

11 System.out.println(curr);

12 } else {

13 for (int i = 0; i < strs.size(); i++) {

14 String s = strs.remove(i);

15 curr.add(s);

16 printSeq(strs, n, curr);

17 curr.remove(curr.size()-1);

18 strs.add(s);

19 }

20 }

21 }

22

(Continued on following page)

6



Part A: When reviewing this implementation, you discover that the code contains a bug that is causing
it to not work as intended. You decide that you want to write a test that exposes the incorrect behavior.
Provide contents for list and n, then write the output that the code above will produce.

list = [“A”, “B”] n = 1

printSeq(list, n);

Output:

Part B: You discover that the bug actually only requires a change to line 18! Fill in the following solution
with the fix that would make the solution work on the test case above.

1 public static void printSeq(List<String> names, int n) {

2 if (names.size() < n) {

3 throw new IllegalArgumentException();

4 }

5 printSeq(names, n, new ArrayList<String>());

6 }

7

8

9 private static void printSeq(List<String> strs, int n, List<String> curr) {

10 if (curr.size() == n) {

11 System.out.println(curr);

12 } else {

13 for (int i = 0; i < strs.size(); i++) {

14 String s = strs.remove(i);

15 curr.add(s);

16 printSeq(strs, n, curr);

17 curr.remove(curr.size()-1);

18 strs.add(s);

19 strs.add(i,s);
20 }

21 }

22 }

7



4. Inheritance Programming
Consider the following class:

public class Beverage {

private double size;

public Beverage(double size) {

this.size = size;

}

public String toString() {

return getSize() + "oz beverage";

}

public double getSize() {

return size;

}

}

Write a new class called SweetenedDrink that represents a beverage containing coffee.
SweetenedDrink should extend Beverage but differ in the following ways:

● SweetenedDrink has a sweetener content (in mg) specified in the constructor as an integer
● SweetenedDrink has a getSweetener() method that returns the sweetener content of the

drink
● SweetenedDrink has an isSweetened() method that returns true if the drink contains at

least 10mg of sweeteners and false otherwise
● If a SweetenedDrink is sweetened (contains at least 10mg of sweetener), the string

representation of the drink ends with "(sweetened)"
○ The rest of the string representation is the same as any other Beverage. For example,

"8 oz beverage (sweetened)"
● SweetenedDrink implements the Comparable interface; SweetenedDrinks are compared

first by size (smaller drinks are “less than” bigger drinks) then by sweetener content (less
sweetener is “less than” more sweetener)

To earn an E on this problem, your SweetenedDrink class must not duplicate any code from the
Beverage class.

Write your solution on the next page.

8



Write your solution to problem #4 here:

public class SweetenedDrink extends Beverage implements Comparable<SweetenedDrink> {

private int sweetener

public SweetenedDrink(double size, int sweetener) {

super(size);

this.sweetener = sweetener;

}

public int getSweetener() {

return sweetener;

}

public boolean isSweetened() {

return sweetener >= 10;

}

public String toString() {

String result = super.toString();

if (isSweetened()) {

result += " (sweetened)";

}

return result;

}

public int compareTo(SweetenedDrink other) {

if (this.getSize() != other.getSize()) {

return Double.compare(this.getSize(), other.getSize());

} else {

return this.getSweetener() - other.getSweetener();

}

}

}

9



5. Linked List Programming
Write a method called squash(int target) to be added to the LinkedIntList class (see the
reference sheet). This method takes a single integer parameter, target, and modifies the list such that
the first occurrence of a node with value target is squashed with the node after it, combining the
values of both nodes.

For example, if the original contents of the linked list were:

linkedList = [1, 2, 4, 2, 2, 3]

Then after running linkedList.squash(2), the list’s contents would be:

linkedList = [1, 6, 2, 2, 3]

Notice that calling squash would only squash the first occurrence of a node with the value target.

If no node with the value target exists within the list, the list should remain unmodified. If a node with
the value target is found, but there is no node following it, then the list should remain unmodified.
Take our original linked list again:

linkedList = [1, 2, 4, 2, 2, 3]

Then after running linkedList.squash(3), the list should be unmodified.

Your implementation for squash may be recursive or iterative — your choice! You may use private
helper methods to solve this problem, but otherwise, you may not assume that any particular methods
are available. You are allowed to define your own variables of type ListNode, and you may not use
any auxiliary data structure to solve this problem (no array, ArrayList, stack, queue, String, etc). Recall
that the data field in the ListNode class is final, and so node values cannot be changed. You MUST
solve this problem by constructing new nodes for the expanded values and rearranging the links of the
lists. Your solution must run in O(n) time where n is the length of the list. Write your implementation to
squash(int target) on the next page.

10



Write your solution to problem #5 here:

public void squash(int target) {

if (this.front != null && this.front.next != null) {

if (this.front.data == target) {

this.front = new ListNode(this.front.data + this.front.next.data,

this.front.next.next);

} else {

ListNode curr = this.front;

while (curr.next != null && curr.next.data != target) {

curr = curr.next;

}

if (curr.next != null && curr.next.next != null) {

curr.next = new ListNode(curr.next.data + curr.next.next.data,

curr.next.next.next);

}

}

}

}

11



6. Binary Tree Programming
Write a method called pathSumCopy() to be added to the IntTree class (see the reference sheet).
This method creates and returns a copy of the tree except all the node values of the new tree contain
the path sum of the other tree. The path sum of a node is defined as the sum of all the values from the
root up to and including that node.

For example, suppose we have the following tree:

Then, after calling IntTree tree2 = tree1.pathSumCopy(); tree2 should look like:

In this case, notice that tree2 has the same exact structure as tree1, but each node contains the
path sum of the corresponding node in the other tree.
You are writing a method that will become part of the IntTree class. You may use private helper
methods to solve this problem, but otherwise you may not call any other methods of the class. tree1
and tree2 should not share any references

Write your solution on the next page.

12



Write your solution to problem #6 here:

public IntTree pathSumCopy() {

IntTree newTree = new IntTree();

newTree.overallRoot = pathSumCopy(this.overallRoot, 0);

return newTree;

}

private IntTreeNode pathSumCopy(IntTreeNode root, int pathSum) {

if (root != null) {

pathSum += root.data;

IntTreeNode newNode = new IntTreeNode(pathSum,

pathSumCopy(root.left, pathSum),

pathSumCopy(root.right, pathSum)

);

return newNode;

}

return null;

}

13


