
CSE 123 Autumn 2024 Review Session Practice Exam

1. Comprehension
Part A: (Select all that apply) Which of these statements are true about runtime?
The runtime of size() in ArrayIntList (from class) is O(n)
The time complexity for a method with two for-loops placed side by side (not nested) is greater than the
time complexity for a method with one for-loop.
A function with a runtime of O(n2) grows faster than a function with a runtime of O(n) as the input size
increases.
If method2 has an O(n) runtime, and method1 calls method2 n times, then the runtime of method1 is
O(nn)
In Big-Oh notation, only the dominating term matters for complexity because lower-order terms become
insignificant for very large input sizes.

Part B: For each of the following binary trees, indicate which type of traversal is shown: pre-order,
in-order, or post-order.

3 -7 2 10 4 1 5

pre-order

in-order

post-order

23 6 -1 1 7 5 4

pre-order

in-order

post-order

7 3 7 -4 7 7 0

pre-order

in-order

post-order

1



Part C: Consider the following method in the IntTree class:
public int mystery() {

return mystery(overallRoot);

}

private int mystery(IntTreeNode root) {

if (root == null) {

return 0;

}

if (root.left == null && root.right == null) {

return root.data;

}

return mystery(root.left) - mystery(root.right);

}

Draw a binary tree with at least 3 nodes such that, if it were stored in the variable tree, the call
tree.mystery() would return 10.

2



2. Code Tracing
Part A: For each of the following, draw the linked lists that are produced by starting with the lists shown
on the right and executing the code provided. You only need to draw the final lists, not any intermediate
steps. You do not need to draw any variables created in the code, only the references p1 and p2 in the
original diagram and the nodes they connect to. You should accurately depict any shared nodes.

p1.next = p2.next.next;
p2.next.next = null;

p1.next.next = p2.next;
p2.next = p1.next;

ListNode temp = p1.next;
p1.next = p2.next.next;
temp.next = p2;
p2 = temp;
p2.next.next.next = null;

3



Part B: Consider the following classes:

public class Tree {
public void fullName() {

genus();
System.out.println("Tree");

}

public void genus() {
System.out.println("Unknown");

}
}

public class Fir extends Tree {
public void genus() {

System.out.println("Abies");
}

}

public class GrandFir extends Fir {
public void fullName() {

genus();
System.out.println("Grandis");

}

public void describe() {
super.fullName();
System.out.println("Flat needles");

}
}

public class PacificSilverFir extends Fir {
public void fullName() {

System.out.println("Pacific Silver Fir");
}

public void describe() {
fullName();
System.out.println("Beautiful");

}
}

Assume the following variables have been defined:
Tree var1 = new Tree();

Fir var2 = new Fir();

Tree var3 = new GrandFir();

PacificSilverFir var4 = new PacificSilverFir();

For each of the following statements, Indicate what the output would be. If the statement would result in
an error (either a compiler error or an exception), write “error” instead. (You may use a slash to indicate
line breaks. For example, “line1/line2” indicates two lines of output: “line1” and “line2.”)

var1.fullName();

var2.fullName();

var3.describe();

var4.describe();

4



Part C: Consider the following method:
public static void mystery(int n) {

if (n % 2 == 0) {

System.out.print(2);

mystery(n / 2);

} else if (n % 3 == 0) {

System.out.print(3);

mystery(n / 3);

} else if (n % 5 == 0) {

System.out.print(5);

mystery(n / 5);

} else if (n >= 1) {

System.out.print(n);

}

}

For each of the following statements, indicate what the output would be.

mystery(5)

mystery(150)

mystery(132)

5



3. Recursion Debugging
Consider a method class called printSeq(List<String> list, int n) that prints all sequences of
strings in list that are of length n. For example, suppose the contents of list are:

list = [“A”, “B”, “C”]

Then, after a call to printSeq(list, 2) is made, the following 6 lines should be printed:

[A, B]

[A, C]

[B, A]

[B, C]

[C, A]

[C, B]

If the length of list is less than n, the code should throw an IllegalArgumentException.

Consider the following incorrect implementation of printSeq:

1 public static void printSeq(List<String> names, int n){

2 if (names.size() < n) {

3 throw new IllegalArgumentException();

4 }

5 printSeq(names, n, new ArrayList<String>());

6 }

7

8

9 private static void printSeq(List<String> strs, int n, List<String> curr){

10 if (curr.size() == n) {

11 System.out.println(curr);

12 } else {

13 for (int i = 0; i < strs.size(); i++) {

14 String s = strs.remove(i);

15 curr.add(s);

16 printSeq(strs, n, curr);

17 curr.remove(curr.size()-1);

18 strs.add(s);

19 }

20 }

21 }

22

(Continued on following page)

6



Part A:When reviewing this implementation, you discover that the code contains a bug that is causing
it to not work as intended. You decide that you want to write a test that exposes the incorrect behavior.
Provide contents for list and n, then write the output that the code above will produce.

list = n =

printSeq(list, n);

Output:

Part B: You discover that the bug actually only requires a change to line 18! Fill in the following solution
with the fix that would make the solution work on the test case above.

1 public static void printSeq(List<String> names, int n) {

2 if (names.size() < n) {

3 throw new IllegalArgumentException();

4 }

5 printSeq(names, n, new ArrayList<String>());

6 }

7

8

9 private static void printSeq(List<String> strs, int n, List<String> curr) {

10 if (curr.size() == n) {

11 System.out.println(curr);

12 } else {

13 for (int i = 0; i < strs.size(); i++) {

14 String s = strs.remove(i);

15 curr.add(s);

16 printSeq(strs, n, curr);

17 curr.remove(curr.size()-1);

18 strs.add(s);

19 ________________________________________________;
20 }

21 }

22 }

7



4. Inheritance Programming
Consider the following class:

public class Beverage {

private double size;

public Beverage(double size) {

this.size = size;

}

public String toString() {

return getSize() + "oz beverage";

}

public double getSize() {

return size;

}

}

Write a new class called SweetenedDrink that represents a beverage containing coffee.
SweetenedDrink should extend Beverage but differ in the following ways:

● SweetenedDrink constructor should take in two values: sweetener content (in mg) as an
integer, and a size of the drink, a double

● SweetenedDrink has a getSweetener() method that returns the sweetener content of the
drink

● SweetenedDrink has an isSweetened() method that returns true if the drink contains at
least 10mg of sweeteners and false otherwise

● If a SweetenedDrink is sweetened (contains at least 10mg of sweetener), the string
representation of the drink ends with "(sweetened)"

○ The rest of the string representation is the same as any other Beverage. For example,
"8 oz beverage (sweetened)"

● SweetenedDrink implements the Comparable interface; SweetenedDrinks are compared
first by size (smaller drinks are “less than” bigger drinks) then by sweetener content (less
sweetener is “less than” more sweetener)

To earn an E on this problem, your SweetenedDrink class must not duplicate any code from the
Beverage class.

Write your solution on the next page.

8



Write your solution to problem #4 here:

9



5. Linked List Programming
Write a method called squash(int target) to be added to the LinkedIntList class (see the
reference sheet). This method takes a single integer parameter, target, and modifies the list such that
the first occurrence of a node with value target is squashed with the node after it, combining the
values of both nodes.

For example, if the original contents of the linked list were:

linkedList = [1, 2, 4, 2, 2, 3]

Then after running linkedList.squash(2), the list’s contents would be:

linkedList = [1, 6, 2, 2, 3]

Notice that calling squash would only squash the first occurrence of a node with the value target.

If no node with the value target exists within the list, the list should remain unmodified. If a node with
the value target is found, but there is no node following it, then the list should remain unmodified.
Take our original linked list again:

linkedList = [1, 2, 4, 2, 2, 3]

Then after running linkedList.squash(3), the list should be unmodified.

Your implementation for squash may be recursive or iterative — your choice! You may use private
helper methods to solve this problem, but otherwise, you may not assume that any particular methods
are available. You are allowed to define your own variables of type ListNode, and you may not use
any auxiliary data structure to solve this problem (no array, ArrayList, stack, queue, String, etc). Recall
that the data field in the ListNode class is final, and so node values cannot be changed. You MUST
solve this problem by constructing new nodes for the expanded values and rearranging the links of the
lists. Your solution must run in O(n) time where n is the length of the list. Write your implementation to
squash(int target) on the next page.

10



Write your solution to problem #5 here:

11



6. Binary Tree Programming
Write a method called pathSumCopy() to be added to the IntTree class (see the reference sheet).
This method creates and returns a copy of the tree except all the node values of the new tree contain
the path sum of the other tree. The path sum of a node is defined as the sum of all the values from the
root up to and including that node.

For example, suppose we have the following tree:

Then, after calling IntTree tree2 = tree1.pathSumCopy(); tree2 should look like:

In this case, notice that tree2 has the same exact structure as tree1, but each node contains the
path sum of the corresponding node in the other tree.
You are writing a method that will become part of the IntTree class. You may use private helper
methods to solve this problem, but otherwise you may not call any other methods of the class. tree1
and tree2 should not share any references

Write your solution on the next page.

12



Write your solution to problem #6 here:

13



CSE 123 Quiz/Exam Reference Sheet
(DO NOT WRITE ANY WORK YOU WANTED GRADED ON THIS REFERENCE SHEET. IT WILL NOT BE GRADED)

Methods Found in ALL collections (List, Set, Map)
clear() Removes all elements of the collection
equals(collection) Returns true if the given other collection contains the same elements
isEmpty() Returns true if the collection has no elements
size() Returns the number of elements in a collection
toString() Returns a string representation such as "[10, -2, 43]"

Methods Found in both List and Set (ArrayList, LinkedList, HashSet, TreeSet)
add(value) Adds value to collection (appends at end of list)
addAll(collection) Adds all the values in the given collection to this one
contains(value) Returns true if the given value is found somewhere in this collection
iterator() Returns an Iterator object to traverse the collection's elements
remove(value) Finds and removes the given value from this collection
removeAll(collection) Removes any elements found in the given collection from this one
retainAll(collection) Removes any elements not found in the given collection from this one

List<Type> Methods
add(index, value) Inserts given value at given index, shifting subsequent values right
indexOf(value) Returns first index where given value is found in list (-1 if not found)
get(index) Returns the value at given index
lastIndexOf(value) Returns last index where given value is found in list (-1 if not found)
remove(index) Removes/returns value at given index, shifting subsequent values left
set(index, value) Replaces value at given index with given value

Map<KeyType, ValueType> Methods
containsKey(key) true if the map contains a mapping for the given key
get(key) The value mapped to the given key (null if none)
keySet() Returns a Set of all keys in the map
put(key, value) Adds a mapping from the given key to the given value
putAll(map) Adds all key/value pairs from the given map to this map
remove(key) Removes any existing mapping for the given key
toString() Returns a string such as "{a=90, d=60, c=70}"
values() Returns a Collection of all values in the map

Math Methods
abs(x) Returns the absolute value of x
max(x, y) Returns the larger of x and y
min(x, y) Returns the smaller of x and y
pow(x, y) Returns the value of x to the y power
random() Returns a random number between 0.0 and 1.0

14



round(x) Returns x rounded to the nearest integer

String Methods
charAt(i) Returns the character in this String at a given index
contains(str) Returns true if this String contains the other's characters inside it
endsWith(str) Returns true if this String ends with the other's characters
equals(str) Returns true if this String is the same as str
equalsIgnoreCase(str) Returns true if this String is the same as str, ignoring capitalization
indexOf(str) Returns the first index in this String where str begins (-1 if not found)
lastIndexOf(str) Returns the last index in this String where str begins (-1 if not found)
length() Returns the number of characters in this String
isEmpty() Returns true if this String is the empty string
startsWith(str) Returns true if this String begins with the other's characters
substring(i, j) Returns the characters in this String from index i (inclusive) to j (exclusive)
substring(i) Returns the characters in this String from index i (inclusive) to the end
toLowerCase() Returns a new String with all this String’s letters changed to lowercase
toUpperCase() Returns a new String with all this String’s letters changed to uppercase
compareTo(str) Returns a negative number if this comes lexicographically (alphabetically) before

other, 0 if they’re the same, positive if this comes lexicographically after other.

Inheritance Syntax
public class Example extends BaseClass {

private type field;
public Example() {

field = something;
}
public void method() {

// do something
}

}

public abstract class AbstractExample {
private type field;

public void method() {
// do something

}

public abstract void abstractMethod();
}

public interface InterfaceExample {
public void method();

}

ArrayIntList LinkedIntList
public class ArrayIntList {

private int[] elementData;
private int size;

}

public class LinkedIntList {
private ListNode front;

private static class ListNode {
public final int data;
public ListNode next;

public ListNode(int data) {
this(data, null);

}

public ListNode(int data, ListNode next) {
this.data = data;
this.next = next;

}}}

15



IntTree Class
public class IntTree {

private IntTreeNode overallRoot;

private static class IntTreeNode {
public final int data;
public IntTreeNode left;
public IntTreeNode right;

public IntTreeNode(int data) {
this(data, null, null);

}

public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {
this.data = data;
this.left = left;
this.right = right;

}
}

}

16


