
Creative Project 3: Better Than Spam

Specification

New Classifiable

Note that our Classifier can work on anything that extends the Classifiable class. Let's try it out
with some more interesting data! In this extension you'll take an existing dataset, load it into a list of
Classifiable objects and see how well our model works. Below is a list of datasets we'd
recommend messing around with (although you're welcome to explore whatever interests you)

1. Weather (./data/weather/train.csv) - predict summary from temperature, humidity, wind
speed, etc.

2. Spotify (./data/songs/train.csv) - predict genre from danceability, energy, key, etc.
3. Your choice! (It might be worth checking out a website like kaggle. When exploring these

datasets, consider whether a machine learning model is actually the best solution to a problem
or if it will likely do more harm than good.

Make sure that the dataset you choose has features that are ints/doubles such that they can be
classified by our threshold splits! You'll also have to make some changes to the constants in
Client.java to load the appropriate dataset into whatever Classifiable class you write. These
changes include implementing an equivalent toEmail method that will create an instance of your
new object from a row in the .csv file. Note in all of these cases that you don't have to use every
single possible feature in the .csv file, just the one(s) you think will be useful for your model!

We HIGHLY recommend looking through the provided Email.java and making sure you understand all the
methods and how they operate before starting this extension.

Implementation Guidelines
As always, your code should follow all guidelines in the Code Quality Guide and Commenting Guide.
In particular, pay attention to these requirements:

All of your fields should be private and each field should not be initialized at declaration.
Any additional helper methods created, but not specified in the spec, should be declared
private.
Each method should have a comment including all necessary information as described in the
Commenting Guide. Comments should be written in your own words (i.e. not copied and
pasted from this spec).
Make sure to avoid including implementation details in your comments. In particular, for your

object class, a client should be able to understand how to use your object effectively by only
reading your class and method comments, but your comments should maintain abstraction by
avoiding implementation details.

Development Guide

Expand

Expand

Expand

Now's your chance to try running your machine-learning model on some real-world data!

Decide on your Dataset

Determine what dataset you'd like to use for classification. In doing so you should be thinking
about what labels you're trying to predict based on the provided input. We've provided you
weather and songs as examples present in the data directory, but you're also welcome to look
for datasets elsewhere like kaggle (although it's always worth asking whether or not ML should be
applied to a dataset before implementing).

Importantly, you'll need to find train / test .csv (comma-separated value) files which you can use
in your implementation to construct / evaluate your resulting tree. You are also welcome to create
a test .csv file by reserving values from your training .csv file. Please place your chosen dataset
in an appropriately named directory within the data folder.

Decide on your Features

Determine which features of the dataset you think would be most beneficial in predicting a
corresponding label. There's no right answer here - you can pick one or many features depending
on what you're trying to predict. Something important to keep in mind when deciding is that these
features must have numerical corresponding values, as splits within our tree store doubles for
each feature.

We'd advise avoiding complex feature values (ones that need to be separated by the SPLITTER
constant like wordPercent~word) and instead using simple ones like windSpeed / temperature /
humidity .

Keep in mind that this decision can be changed later! However, you should have a good idea of
what feature(s) you'd like to include before moving onto the next step. We'd recommend starting
with fewer features (1-2) and then adding more should you be unsatisfied with the performance
you're seeing in the later steps.

Implement your Classifiable Class

Expand

Now you need to put these decisions into practice! Specifically, you'll be implementing a
Classifiable class that stores the relevant features for the dataset you've chosen! Remember
that implementing this interface requires the following:

A constructor with parameters of your choosing that sets up the initial state.

public double get(String feature)

Returns the numeric value corresponding to the provided feature.

public Set<String> getFeatures()

Returns a Set containing all features of this datatype

public static Classifiable toClassifiable(List<String> row)

Constructs a new instance of this object from a row of the .csv file your data is present in
represented as a List<String>

public Split partition(Classifiable other)

Returns a Split representing the midpoint between this instance and the provided other .
This is likely to be the most challenging part of your implementation; however, it is
entirely your choice how to determine the midpoint. However, if your implementation
has multiple features, this step will likely involve determining a priority you give these
features (which is most / least important in determining a midpoint).

It's highly encouraged that you look at Email for an example implementation of all of these
methods. Note that this implementation uses a complex feature wordPercent , meaning its
internal state and partition algorithm are likely to be more complex than yours!

Test your Model!

First, you'll have to make a few changes to the provided Client class such that it loads and works
with your implemented Classifiable class.

1. Change the TRAIN_FILE and TEST_FILE constants to point to the .csv files you found in
step 1.

1. Remember, these should be within the data directory in an appropriately named
subfolder

2. Change the LABEL_INDEX constant to the appropriate index of the label you're trying to
predict within the training .csv file

3. Change the CONVERTER constant to reference the toClassifiable method you

implemented in step 3
1. This should only involve changing Email to the name of the class you implemented!

With these steps completed, you should be able to load and evaluate your new model! Does it
perform well / poorly? Why?

At this point you've completed the requirements for this portion of the assignment, but you're
welcome to continue iteratively refining your solution. Does adding more features help / harm
your result? What about a different subset of features? How about how you're partitioning
between two datapoints? All of these things can be changed after the fact - just make sure that you
have a working implementation on your final submission!

WARNING: Before submitting, make sure that the Client class has been modified such that it loads and
tests your Classifiable implementation (not Email). We will run Client exactly as provided to determine
whether you've met the requirements for this assignment.

New Classifiable

C3_BetterThanSpam.zip

ClassificationTreeClassFiles.zip

Download Starter Code:

Start by uploading your working implementation to ClassificationTree and then work on
implementing your Classifiable datatype!

Required steps

Implement your Classifiable class following the development guide.
Make sure your data set is present in the workspace.
Modify Client such that it loads and tests your Classifiable implementation (not Email).
We will run Client exactly as provided to determine whether you've met the requirements for
this assignment.
Follow the Code Quality Guide and Commenting Guide.

NOTE: The tests provided are surface-level compilation checks. You do not need to pass these tests, but it is
still your responsibility to guarantee that you have a working Classifiable and Client
implementation to receive credit.

What do I do if I don't have a working ClassificationTree solution?

If you do not have a working ClassificationTree solution, that's fine! You can use our compiled
.class files stored in the zip files below and upload those instead of having a
ClassificationTree.java file. Make sure to delete the ClassificationTree.java file so that the
.class files are actually run!

