
Abstract Classes + Hashing
Hitesh Boinpally
Summer 2023

Agenda

• Inheritance Review
• Abstract Classes
• Hashing

Lesson 14 - Summer 2023 2

Inheritance

• Inheritance: Forming hierarchial relationships
between classes

• Allows for sharing / reusing of code between classes
• Superclass: The class being extended
• Subclass: The class that inherits behavior from

superclass
• Gains copy of every method

Lesson 14 - Summer 2023 4

Inheritance

• Inheritance: Forming hierarchial relationships
between classes

• Allows for sharing / reusing of code between classes
• Superclass: The class being extended
• Subclass: The class that inherits behavior from

superclass
• Gains copy of every method

• Inheritance forms an “is-a” relationship
• Tiger extends Cat
• Means that Tiger “is-a” Cat

Lesson 14 - Summer 2023 5

Cat

Tiger

6

public class MusicPlayer {
public void m1() {

S.o.pln("MusicPlayer1");
}

}
public class TapeDeck extends MusicPlayer {

public void m3() {
S.o.pln("TapeDeck3");

}
}

public class IPod extends MusicPlayer {
public void m2() {

S.o.pln("IPod2");
m1();

}
}
public class IPhone extends IPod {

public void m1() {
S.o.pln("IPhone1");
super.m1();

}

public void m3() {
S.o.pln("IPhone3");

}
}

m1() m2() m3()

MusicPlayer

TapeDeck

IPod

IPhone

Lesson 14 - Summer 2023

7

public class MusicPlayer {
public void m1() {

S.o.pln("MusicPlayer1");
}

}
public class TapeDeck extends MusicPlayer {

public void m3() {
S.o.pln("TapeDeck3");

}
}

public class IPod extends MusicPlayer {
public void m2() {

S.o.pln("IPod2");
m1();

}
}
public class IPhone extends IPod {

public void m1() {
S.o.pln("IPhone1");
super.m1();

}

public void m3() {
S.o.pln("IPhone3");

}
}

m1() m2() m3()

MusicPlayer MP1 / /

TapeDeck MP1 / TD3

IPod MP1
IPod2
m1() /

IPhone
IPhone1

MP1
IPod2
m1()

IPhone3

Lesson 14 - Summer 2023

8

MusicPlayer var1 = new TapeDeck();
MusicPlayer var2 = new IPod();
MusicPlayer var3 = new IPhone();
IPod var4 = new IPhone();
Object var5 = new IPod();
Object var6 = new MusicPlayer();

m1() m2() m3()

MusicPlayer MP1 / /

TapeDeck MP1 / TD3

IPod MP1
IPod2
m1() /

IPhone
IPhone1

MP1
IPod2
m1()

IPhone3

((TapeDeck) var1).m2();

((IPod) var3).m2();

((IPhone) var2).m1();

((TapeDeck) var3).m2();

Lesson 14 - Summer 2023

9

MusicPlayer var1 = new TapeDeck();
MusicPlayer var2 = new IPod();
MusicPlayer var3 = new IPhone();
IPod var4 = new IPhone();
Object var5 = new IPod();
Object var6 = new MusicPlayer();

m1() m2() m3()

MusicPlayer MP1 / /

TapeDeck MP1 / TD3

IPod MP1
IPod2
m1() /

IPhone
IPhone1

MP1
IPod2
m1()

IPhone3

((TapeDeck) var1).m2();
Compiler Error (CE)
((IPod) var3).m2();
IPod2 / IPhone1 /
MusicPlayer1
((IPhone) var2).m1();
Runtime Error (RE)
((TapeDeck) var3).m2();
Compiler Error (CE)

Lesson 14 - Summer 2023

The Rules

Lesson 14 - Summer 2023 10

Abstract Classes

• Allow us to construct classes that leverage
both inheritance and interface ideas

• Abstract classes cannot be instantiated (like
interfaces)

• Include method implementations that can be
leveraged with inheritance

• Can define abstract methods, which must be
implemented by any subclass (like interfaces)

Lesson 14 - Summer 2023 12

Agenda

• Inheritance Review
• Abstract Classes
• Hashing

Lesson 14 - Summer 2023 13

Recall: Arrays

• Allow for random access (continguous memory)
• Have fast access if we know the index we are looking for

• Runtime of adding a value to an unsorted array?

• Runtime of checking if a value exists in an unsorted
array?

Lesson 14 - Summer 2023 14

Hashing
• Idea: Map every value for some object to some integer index

• Store these values in an array based on the index (hash table)

• Hash Function: An algorithm to do this mapping
• Idea for integers: HF(x) = x % table.length

Lesson 14 - Summer 2023 15

Hashing
• Idea: Map every value for some object to some integer index

• Store these values in an array based on the index (hash table)

• Hash Function: An algorithm to do this mapping
• Idea for integers: HF(x) = x % table.length

Lesson 14 - Summer 2023 16

set.add(11); // 11 % 10 == 1
set.add(49); // 49 % 10 == 9
set.add(24); // 24 % 10 == 4
set.add(7); // 7 % 10 == 7

index 0 1 2 3 4 5 6 7 8 9

value 0 11 0 0 24 0 0 7 0 49

Hashing Efficiency

public static int hashFunction(int i) {
return Math.abs(i) % elementData.length;

}

• Add: set elementData[HF(i)] = i;

• Search: check if elementData[HF(i)] == i

• Remove: set elementData[HF(i)] = 0;

• What is the runtime of add, contains, and remove?
• O(1)!

• Are there any problems with this approach?

Lesson 14 - Summer 2023 17

“Good” Hash Functions

• Goal: Map an object to a number
• Requirements:

• The same object should always have the same number
• If two objects are considered “equal” they should have the

same hash code

Lesson 14 - Summer 2023 18

“Good” Hash Functions

• Goal: Map an object to a number
• Requirements:

• The same object should always have the same number
• If two objects are considered “equal” they should have the

same hash code

• To be good:
• Results should be distributed approximately uniformly
• Should “look random”

Lesson 14 - Summer 2023 19

“Good” Hash Functions

• Goal: Map an object to a number
• Requirements:

• The same object should always have the same number
• If two objects are considered “equal” they should have the

same hash code

• To be good:
• Results should be distributed approximately uniformly
• Should “look random”

• How to write a hash function for String objects?

Lesson 14 - Summer 2023 20

Hashing Objects

• The hashCode function inside String objects looks like this:

public int hashCode() {
int hash = 0;
for (int i = 0; i < this.length(); i++) {

hash = 31 * hash + this.charAt(i);
}
return hash;

}

• As with any general hashing function, collisions are possible.
• Example: "Ea" and "FB" have the same hash value.

• Early versions of Java examined only the first 16 characters.
For some common data this led to poor hash table performance.

Lesson 14 - Summer 2023 21

Hashing Objects

• Hashing integers is easy (just mod by length)
• For objects, all Java objects contain the hashCode method

(inherited from Object class)
• public int hashCode()
• Returns the hash code for an object

• hashCode’s implementation varies based on the object
• You can define your own for your objects!

Lesson 14 - Summer 2023 22

Hash function for objects

public static int hashFunction(E e) {

return Math.abs(e.hashCode()) % elements.length;

}

• Add: set elements[HF(o)] = o;

• Search: check if elements[HF(o)].equals(o)

• Remove: set elements[HF(o)] = null;

Lesson 14 - Summer 2023 23

