
Comparable + Huffman
Hitesh Boinpally
Summer 2023



Agenda
• Comparable
• P3 - Huffman

Lesson 12 - Summer 2023 2



Agenda
• Comparable
• P3 - Huffman

Lesson 12 - Summer 2023 3



Interfaces Review

• Define set of behavior a class can implement
• “Contract”, “Certification”
• List and Set are some interfaces we’ve used

• To utilize:
public class Tesla implements Car

• Says that Tesla “implements” the Car
interface

Lesson 12 - Summer 2023 4



The Comparable Interface

• Say you had a FootballTeam class and
wanted to sort them
• How could you tell Java how to sort them?

Lesson 12 - Summer 2023 5



The Comparable Interface

• Say you had a FootballTeam class and
wanted to sort them
• How could you tell Java how to sort them?

•Utilize the Comparable interface!
• Fixed definition of how to compare objects
• This is needed to allow objects to be added 

to TreeSets and TreeMaps

Lesson 12 - Summer 2023 6



Agenda
• Comparable
• P3 - Huffman

Lesson 12 - Summer 2023 7



Priority Queues and Huffman Encoding

Introduction to the Final Project

Hunter Schafer

CSE 143, Autumn 2021



Priority Queue

Priority Queue

A collection of ordered elements that provides fast access to 

the minimum (or maximum) element.

public class PriorityQueue<E> implements Queue<E>

PriorityQueue<E>() constructs an empty queue

add(E value) adds value in sorted order to the queue

peek() returns minimum element in queue

remove() removes/returns minimum element in queue

size() returns the number of elements in queue

Queue<String> tas = new PriorityQueue<String>(); 

tas.add("Watson");

tas.add("Sherlock"); 

tas.remove();
1



Priority Queue

Priority Queue

A collection of ordered elements that provides fast access to 

the minimum (or maximum) element.

public class PriorityQueue<E> implements Queue<E>

PriorityQueue<E>() constructs an empty queue

add(E value) adds value in sorted order to the queue

peek() returns minimum element in queue

remove() removes/returns minimum element in queue

size() returns the number of elements in queue

Queue<String> tas = new PriorityQueue<String>(); 

tas.add("Watson");

tas.add("Sherlock"); 

tas.remove(); // "Sherlock"
1



Final Project: Huffman Coding



File Compression

Compression

Process of encoding information so that it takes up less space.

Compression applies to many things!

• Store photos without taking up the whole hard-drive

• Reduce size of email attachment

• Make web pages smaller so they load faster

• Make voice calls over a low-bandwidth connection (cell, Skype)

Common compression programs:

• WinZip, WinRar for Windows

• zip

2



ASCII

ASCII (American Standard Code for Information Interchange)

Standardized code for mapping characters to integers

• Many text files on your computer are in ASCII.

• But, computers need numbers represented in binary!

3

Character ASCII value

‘ ’ 32

‘a’ 97

‘b’ 98

‘c’ 99

‘e’ 101

‘z’ 122



ASCII

ASCII (American Standard Code for Information Interchange)

Standardized code for mapping characters to integers

• Many text files on your computer are in ASCII.

• But, computers need numbers represented in binary!

Every character is represented by a byte (8 bits).

3

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010



ASCII Example

4

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

What is the binary representation of the following String?

cab z



ASCII Example

4

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

What is the binary representation of the following String?

cab z

Answer

01100011



ASCII Example

4

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

What is the binary representation of the following String?

cab z

Answer

01100011 01100001



ASCII Example

4

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

What is the binary representation of the following String?

cab z

Answer

01100011 01100001 01100010



ASCII Example

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

What is the binary representation of the following String?

cab z

4

Answer

01100011 01100001 01100010 00100000



ASCII Example

4

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

What is the binary representation of the following String?

cab z

Answer

01100011 01100001 01100010 00100000 01111010



ASCII Example

4

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

What is the binary representation of the following String?

cab z

Answer

0110001101100001011000100010000001111010



Another ASCII Example

5

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

How do we read the following binary as ASCII?

011000010110001101100101



Another ASCII Example

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

How do we read the following binary as ASCII?

01100001 01100011 01100101

Answer

5



Another ASCII Example

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

How do we read the following binary as ASCII?

01100001 01100011 01100101

Answer

a

5



Another ASCII Example

5

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

How do we read the following binary as ASCII?

01100001 01100011 01100101

Answer

ac



Another ASCII Example

5

Character ASCII value Binary Representation

‘ ’ 32 00100000

‘a’ 97 01100001

‘b’ 98 01100010

‘c’ 99 01100011

‘e’ 101 01100101

‘z’ 122 01111010

How do we read the following binary as ASCII?

01100001 01100011 01100101

Answer

ace



Huffman Idea

Huffman’s Insight

Use variable length encodings for different characters to take 

advantage of frequencies in which characters appear.

• Make more frequent characters take up less space.

• Don’t have codes for unused characters.

• Some characters may end up with longer encodings, 

but this should happen infrequently.

6



Huffman Encoding

• Create a “Huffman Tree” that gives a good binary representation 

for each character.

• The path from the root to the character leaf is the encoding for 

that character; left means 0, right means 1.

ASCII Table

Character Binary Representation

‘ ’ 00100000

‘a’ 01100001

‘b’ 01100010

‘c’ 01100011

‘e’ 01100101

‘z’ 01111010

Huffman Tree

0

0 1

0 1

1

‘b’

‘c’ ‘ ’

‘a’

7



Final Project: Huffman Coding

8

The final project asks you to write a class that manages creating and 

using this Huffman code.

(A) Create a Huffman Code from a file and compress it.

(B) Decompress the file to get original contents.



Part A: Making a HuffmanCode Overview

9

Input File Contents

bad cab



Part A: Making a HuffmanCode Overview

9

Input File Contents

bad cab

Step 1: Count the occurrences of each character in file

{' '=1, 'a'=2, 'b'=2, 'c'=1, 'd'=1}



Part A: Making a HuffmanCode Overview

Input File Contents

bad cab

‘ ’

freq: 1

‘c’

freq: 1

‘d’

freq: 1

‘a’

freq: 2

‘b’

freq: 2

9

Step 1: Count the occurrences of each character in file

{' '=1, 'a'=2, 'b'=2, 'c'=1, 'd'=1}

Step 2: Make leaf nodes for all the characters. Place in a PriorityQueue

pq ← ←



Part A: Making a HuffmanCode Overview

Input File Contents

bad cab

‘ ’

freq: 1

‘c’

freq: 1

‘d’

freq: 1

‘a’

freq: 2

‘b’

freq: 2

9

Step 1: Count the occurrences of each character in file

{' '=1, 'a'=2, 'b'=2, 'c'=1, 'd'=1}

Step 2: Make leaf nodes for all the characters. Place in a PriorityQueue

pq ← ←

Step 3: Use Huffman Tree building algorithm (described soon)



Part A: Making a HuffmanCode Overview

Input File Contents

bad cab

‘ ’

freq: 1

‘c’

freq: 1

‘d’

freq: 1

‘a’

freq: 2

‘b’

freq: 2

9

Step 1: Count the occurrences of each character in file

{' '=1, 'a'=2, 'b'=2, 'c'=1, 'd'=1}

Step 2: Make leaf nodes for all the characters. Place in a PriorityQueue

pq ← ←

Step 3: Use Huffman Tree building algorithm (described soon)

Step 4: Save encoding to .code file to encode/decode later.

{'d'=00, 'a'=01, 'b'=10, ' '=110, 'c'=111}



Part A: Making a HuffmanCode Overview

Input File Contents

bad cab

‘ ’

freq: 1

‘c’

freq: 1

‘d’

freq: 1

‘a’

freq: 2

‘b’

freq: 2

9

Step 1: Count the occurrences of each character in file

{' '=1, 'a'=2, 'b'=2, 'c'=1, 'd'=1}

Step 2: Make leaf nodes for all the characters. Place in a PriorityQueue

pq ← ←

Step 3: Use Huffman Tree building algorithm (described soon)

Step 4: Save encoding to .code file to encode/decode later.

{'d'=00, 'a'=01, 'b'=10, ' '=110, 'c'=111}

Step 5: Compress the input file using the encodings 

Compressed Output: 1001001101110110



Step 1: Count Character Occurrences

We do this step for you

Input File

bad cab

Generate Counts Array:

index 0 1

value 0 0

...
32 97 98 99 100 101

10

2 2 1 1 0

...



Step 2: Create PriorityQueue

• Store each character and its frequency in a HuffmanNode

object.

• Place all the HuffmanNodes in a PriorityQueue so that they 

are in ascending order with respect to frequency

pq ←
‘ ’

freq: 1

‘c’

freq: 1

‘d’

freq: 1

‘a’

freq: 2

‘b’

freq: 2

11

←



Step 3: Remove and Merge

pq ←
‘ ’

freq: 1

‘c’

freq: 1

‘d’

freq: 1

‘a’

freq: 2

‘b’

freq: 2

12

←



Step 3: Remove and Merge

freq: 2

‘ ’

freq: 1

‘c’

freq: 1

pq ←
‘d’

freq: 1

‘a’

freq: 2

‘b’

freq: 2

12

←



Step 3: Remove and Merge

pq ← ‘d’

freq: 1

‘a’

freq: 2

‘b’

freq: 2

freq: 2

‘ ’ ‘c’

freq: 1 freq: 1

12

←



Step 3: Remove and Merge

freq: 3

‘d’

freq: 1

‘a’

freq: 2

pq ← ‘b’

freq: 2

freq: 2

‘ ’

freq: 1

‘c’

freq: 1

←

12



Step 3: Remove and Merge

pq ← ‘b’

freq: 2

freq: 2

‘ ’ ‘c’

freq: 1 freq: 1

freq: 3

‘d’ ‘a’

freq: 1 freq: 2

12

←



Step 3: Remove and Merge

freq: 4

‘b’

freq: 2 freq: 2

‘ ’

freq: 1

‘c’

freq: 1

pq ←

freq: 3

‘d’

freq: 1

‘a’

freq: 2

←

12



Step 3: Remove and Merge

pq ←

freq: 3

‘d’

freq: 1

‘a’

freq: 2

freq: 4

‘b’

freq: 2 freq: 2

‘ ’

freq: 1

‘c’

freq: 1

←

12



Step 3: Remove and Merge

freq: 7

freq: 3

‘d’

freq: 1

‘a’

freq: 2

freq: 4

‘b’

freq: 2 freq: 2

‘ ’

freq: 1

‘c’

freq: 1

pq ←

12

←



Step 3: Remove and Merge

pq ←

freq: 7

freq: 3

‘d’

freq: 1

‘a’

freq: 2

freq: 4

‘b’

freq: 2 freq: 2

‘ ’

freq: 1

‘c’

freq: 1

←

12



Step 3: Remove and Merge

pq ←

freq: 7

freq: 3

‘d’

freq: 1

‘a’

freq: 2

freq: 4

‘b’

freq: 2 freq: 2

‘ ’

freq: 1

‘c’

freq: 1

←

12

• What is the relationship between frequency in file and binary 

representation length?



Step 3: Remove and Merge Algorithm

13

Algorithm Pseudocode

while P.Q. size > 1:

remove two nodes with lowest frequency 

combine into a single node

put that node back in the P.Q.



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we 

made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

14



Step 4: Print Encodings

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

Save the tree to a file to save the encodings for the characters we 

made.

Output of save

14



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we 

made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

14

Output of save

100

00



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we 

made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

14

Output of save

100

00

97

01



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we 

made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

14

Output of save

100

00

97

01

98

10



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we 

made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

14

Output of save

100

00

97

01

98

10

32

110



Step 4: Print Encodings

Save the tree to a file to save the encodings for the characters we 

made.

0 1

0

0

0 1

1

1

‘d’ ‘a’ ‘b’

‘ ’ ‘c’

14

Output of save

100

00

97

01

98

10

32

110

99

111



Step 5: Compress the File

We do this step for you

Take the original file and the .code file produced in last step to 

translate into the new binary encoding.

Input File

bad cab

Compressed Output

Huffman Encoding

15

100

00

97

01

98

10

32

110

99

111



Step 5: Compress the File

We do this step for you

Take the original file and the .code file produced in last step to 

translate into the new binary encoding.

Input File

bad cab

Compressed Output

Huffman Encoding

100 'd '

00

97 'a '

01

98 'b '

10

32 ' '

110

99 'c '

111

15



Step 5: Compress the File

15

We do this step for you

Take the original file and the .code file produced in last step to 

translate into the new binary encoding.

Input File

bad cab

Compressed Output

10 01 00 110 111 01 10

Huffman Encoding

100 'd '

00

97 'a '

01

98 'b '

10

32 ' '

110

99 'c '

111



Step 5: Compress the File

15

We do this step for you

Take the original file and the .code file produced in last step to 

translate into the new binary encoding.

Input File

bad cab

Compressed Output

10 01 00 110 111 01 10

Uncompressed Output

01100010 01100001 01100100

00100000 01100011 01100001

01100010

Huffman Encoding

100 'd '

00

97 'a '

01

98 'b '

10

32 ' '

110

99 'c '

111



Part B: Decompressing the File

16

Step 1: Reconstruct the Huffman tree from the code file

Step 2: Translate the compressed bits back to their character values.



Step 1: Reconstruct the Huffman Tree

17

Input code File

97

0

101

100

32

101

112

11

Now are just given the code file produced by our program and we 

need to reconstruct the tree.

Initially the tree is empty

0

0 1

0 1

1

‘a’

‘e’ ‘ ’

‘p’



Step 1: Reconstruct the Huffman Tree

Input code File

97

0

101

100

32

101

112

11

Now are just given the code file produced by our program and we 

need to reconstruct the tree.

Tree after processing first pair

0

0 1

0 1

1

‘a’

17

‘e’ ‘ ’

‘p’



Step 1: Reconstruct the Huffman Tree

Now are just given the code file produced by our program and we 

need to reconstruct the tree.

Input code File

97

0

101

100

32

101

112

11

Tree after processing second 

pair

0

0 1

0 1

1

‘a’

‘e’

17

‘ ’

‘p’



Step 1: Reconstruct the Huffman Tree

Input code File

97

0

101

100

32

101

112

11

Now are just given the code file produced by our program and we 

need to reconstruct the tree.

Tree after processing third pair

0

0 1

0 1

1

‘a’

‘e’ ‘ ’

17

‘p’



Step 1: Reconstruct the Huffman Tree

Input code File

97

0

101

100

32

101

112

11

Now are just given the code file produced by our program and we 

need to reconstruct the tree.

Tree after processing last pair

0

0 1

0 1

1

‘a’

‘e’ ‘ ’

‘p’

17



Step 2 Example

After building up tree, we will read the compressed file bit by bit.

Input

0101110110101011100

Output

0

0 1

0 1

1

‘a’

‘e’ ‘ ’

‘p’

18



Step 2 Example

After building up tree, we will read the compressed file bit by bit.

Input

0101110110101011100

Output

a papa ape

0

0 1

0 1

1

‘a’

‘e’ ‘ ’

‘p’

18



Working with Bits? That Sounds a Little Bit Hard

19

Reading bits in Java is kind of tricky, we are providing a class to help!

public class BitInputStream

BitInputStream(String 

file)

Creates a stream of bits from file

hasNextBit() Returns true if bits remain in the 

stream

nextBit() Reads and returns the next bit in the 

stream



Review - Final Project

Part A: Compression

public HuffmanCode(int[] counts)

• Slides 11-13

public void save(PrintStream out)

• Slide 14

Part B: Decompression

public HuffmanCode(Scanner input)

• Slide 17

public void translate(BitInputStream in,

PrintStream out)

• Slide 18
20


