
CSE 123 Practice Final Exam

Section (e.g., AA):_____________________ Student Number: _________________________

Do not turn the page until you are instructed to do so.
Name of Student: __

Rules/Guidelines:
● You must not begin working before time begins, and you must stop working promptly when time is called. Any

modifications to your exam (writing or erasing) before time begins or after time is called will result in a penalty.
● You are allowed one page of notes, no larger than 8.5 x 11 inches. You may not access any other resources or

use any electronic devices (including calculators, phones, or smart watches, among others) during the exam.
Using unauthorized resources or devices will result in a penalty.

● In general, you are limited to Java concepts or syntax covered in class. You may not use break, continue, a
return from a void method, try/catch, or Java 8 features.

● You are limited to the standard Java classes and methods listed on the provided reference sheet. You do not need
to write import statements.

● If you abandon one answer and write another, clearly cross out the answer(s) you do not want graded and draw
a circle or box around the answer you do want graded. When in doubt, we will grade the answer that appears in
the space indicated, and the first such answer if there is more than one.

● If you require scratch paper, raise your hand and we will bring some to you.
● If you write an answer on scratch paper, please write your name and clearly label which question you are

answering on the scratch paper, and clearly indicate on the question page that your answer is on scratch paper.
Staple all scratch paper you want graded to the end of the exam before turning in.

● Answers must be written as proper Java code. Pseudocode or comments will not be graded.
● The exam is not graded on code quality. You are not required to include comments.
● You are also allowed to abbreviate "System.out.print" and "System.out.println" as "S.o.p" and "S.o.pln"

respectively. You may NOT use any other abbreviations.

Grading:
● Each problem will receive a single E/S/N grade.

○ On problems 1 through 3, earning an E requires answering all parts correctly and earning an S requires
answering almost all parts correctly.

○ On problems 4 through 6, earning an E requires an implementation that meets all stated requirements
and behaves exactly correctly in all cases. Earning an S requires an implementation that meets all stated
requirements and behaves exactly correctly in most cases or behaves nearly correctly in all cases.

● Minor syntax errors will be ignored as long as it is unambiguous what was intended (e.g. forgetting a semicolon,
misspelling a variable name where there is only one close option). Major syntax errors, or errors where it is
unclear what was intended, may have an impact on your grade.

Advice:
● Read all questions carefully. Be sure you understand the question before you begin your answer.
● The questions are not necessarily in order of difficulty. Feel free to skip around. Be sure you are able to at least

attempt every question.
● Write clearly and legibly. We cannot award credit for answers we cannot read.
● If you have questions, raise your hand to ask. The worst that can happen is we will say "I can’t answer that."
● Ask questions as soon as you have them. Do not wait until you have several questions.

Initial here to indicate you have read and agreed to these rules:

1. Code Comprehension
Part A: For the following binary tree, write the preorder, inorder, and postorder traversal.

+---+

| 4 |

+---+

/ \

/ \

+---+ +---+

| 2 | | 1 |

+---+ +---+

/ \ / \

/ \ / \

+---+ +---+ +---+ +---+

| 7 | | 3 | | 8 | | 5 |

+---+ +---+ +---+ +---+

\ \ /

\ \ /

+---+ +---+ +---+

| 9 | | 6 | | 0 |

+---+ +---+ +---+

Preorder: __

Inorder: ___

Postorder: ___

Part B: (Select all that apply) Which of these statements are true about inheritance?
Inheritance allows a subclass to access all private properties and methods of its

parent class.

Calling a method using super will go to the parent class one level above the

current subclass.

To indicate that class A is a subclass of B, we write public class B extends A

Parent classes can call the methods of their subclasses.

If class A is a subclass of B, then the following statement is legal:
B a = new A();

2

Part C: Consider the following method in the IntTree class:
1 public List<String> method() {

2 List<String> result = new ArrayList<>();

3 methodHelper(overallRoot, result, "");

4 return result;

5 }

6

7 private void methodHelper(TreeNode root, List<String> result, String s) {

8 if (root != null) {

9 s += root.data;

10 if (root.left == null && root.right == null) {

11 result.add(s);

12 } else {

13 s += ", ";

14 methodHelper(root.left, result, s);

15 methodHelper(root.right, result, s);

16 }

17 }

18 }

19

Provide a tree that, if called by the above method, would result in a list of size 3.

3

2.Code Tracing
Part A: For each of the following, write the code necessary to convert the following sequences of
ListNode objects:

Before:
list -> [5] -> [4] -> [3] /

After:
list -> [4] -> [5] -> [3] /

Before:
list -> [1] -> [2] /

list2 -> [3] -> [4] /

After:
list -> [4] -> [1] /

list2 -> [2] -> [3] /

4

Part B: Consider the following classes:
public class Wanda extends Hulk {

public void method1() {

System.out.print("Wanda1 ");

}

public void method2() {

System.out.print("Wanda2 ");

super.method2();

}

}

public class Superman extends Thor {

public void method1() {

System.out.print("Superman1 ");

}

public String toString() {

return “Good news everyone!”;

}

}

(continued on next page…)

public class Hulk extends Thor {

public void method2() {

System.out.print("Hulk2 ");

super.method2();

}

}

public class Thor {

public void method1() {

System.out.print("Thor1 ");

}

public void method2() {

System.out.print("Thor2 ");

method1();

}

public String toString() {

return “We’re doomed!”;

}

}

5

Given the classes above, what output is produced by the following code?
Thor[] superheros = {new Wanda(), new Thor(), new Superman(), new Hulk()};

for (int i = 0; i < superheros.length; i++) {

superheros[i].method2();

System.out.println();

System.out.println(superheros[i]);

superheros[i].method1();

System.out.println();

}

Indicate what the output of each of the following statements would be.

superheros[0]: Wanda

superheros[1]: Thor

superheros[2]: Superman

superheros[3]: Hulk

6

3. Linked List Debugging
Consider a method in the LinkedIntList class called removeFromEnd that takes an integer as a

parameter and removes the node from the end of the list. You may assume is less than or equal to𝑛𝑡ℎ 𝑛
the size of the list.

For example, suppose the variable list1 contains the following list:
list1 = [1, 8, 9, 3, 12]

After the call list1.removeFromEnd(2) executes, the variables list1 would contain the following list:
list1 = [1, 8, 9, 12]

Consider the following buggy implementation of removeFromEnd:
1 public void removeFromEnd(int n) {

2 ListNode curr = front;

3 for (int i = 0; i < n; i++) {

4 curr = curr.next;

5 }

6

7 if (curr == null) {

8 front = front.next;

9 } else {

10 ListNode temp = front;

11 while (curr != null) {

12 curr = curr.next;

13 temp = temp.next;

14 }

15 temp.next = temp.next.next;

16 }

17 }

(continued on next page…)

7

This implementation contains a single bug that is causing it to not work as intended.

Part A: Identify the single line of code that contains the bug. Write your answer in the box to the right as
a single number.

Part B: Annotate (write on) the code below to indicate how you would fix the bug. You may add (using
arrows to indicate where to insert), remove (by crossing out), or modify (with a combination) any code
you choose. However, the fix should not require a lot of work.

1 public void removeFromEnd(int n) {

2 ListNode curr = front;

3 for (int i = 0; i < n; i++) {

4 curr = curr.next;

5 }

6

7 if (curr == null) {

8 front = front.next;

9 } else {

10 ListNode temp = front;

11 while (curr != null) {

12 curr = curr.next;

13 temp = temp.next;

14 }

15 temp.next = temp.next.next;

16 }

17 }

8

4. Inheritance Programming
You have been asked to extend a pre-existing class Student that represents a college student. A student has
a name, a year (such as 1 for freshman and 4 for senior), and a set of courses that the student is taking. The
Student class is as follows:

public class Student {

private String name;

private int year;

private Set<String> courses;

public Student(String name, int year) {

this.name = name;

this.year = year;

this.courses = new HashSet<>();

}

public void addCourse(String name) {

courses.add(name);

}

public void dropAll() {

courses.clear();

}

public int getCourseCount() {

return courses.size();

}

public String getName() {

return name;

}

public int getYear() {

return year;

}

}

9

You are to define a new class called GradStudent that extends Student through inheritance. A GradStudent

should behave like a Student except for the following differences:
● A grad student keeps track of a research advisor, which is a professor working with the student.
● Grad students are considered to be 4 years further ahead than typical students. So, for example, a grad

student in year 1 of grad school is really in year 5 of school overall.
● Grad students can enroll in a maximum of 3 courses at a time. If a grad student tries to add additional

courses beyond 3, the course is not added to the student's set of courses.
● If grad students work too much, they become "burnt out." A burnt-out student is one who is in their 5th

or higher year of grad school (9th or higher year of school overall) or one who is taking 3 courses.
You should provide the same methods as the superclass, as well as the following new behavior.

Constructor/Method Description

public GradStudent(String name, int year, String
advisor)

Constructs a graduate student with the given
name, given year (where 1 is the first year of
grad school, 5th year of school overall; etc.),
and research advisor

public String getAdvisor() Returns this grad student's research advisor

public boolean isBurntOut() Returns true if grad student is "burnt out" (in at
least the 5th year of grad school, and/or taking
3 courses)

GradStudent should also implement the Comparable interface; GradStudents are sorted first by their year in
school (younger students come before older students) then by the number of classes they are currently taking
(less classes come before more classes). Those that are in the same year of school and are currently taking
the same amount of classes are sorted alphabetically by their name.

10

Write your solution to problem #4 here:

11

5. Recursive Programming
Write a recursive method called partitionable that accepts a list of integers as a parameter and
discovers whether the list can be partitioned into two sub-lists of equal sum. Your method should return
true if the given list can be partitioned equally, and false if not. THe table below includes various
possible values for variable name list and the value that would be returned by the call of
partitionable(list):

List Return

[] true

[42] false

[1,2,3] true

[1,2,3,4,6] true

[2,1,8,3] false

[8,8] true

[-3,14,3,8] true

[-4,5,7,2,9] false

For example, the list [1,2,3] can be split into [1,2] and [3], both of which have a sum of 3. The list
[1,2,3,4,6] can be split into [1,3,4] and [2,6], both of which have a sum of 8. For the list
[2,1,8,3], there is no way to split the list into two sub-lists with equal sums.

You are allowed to modify the list passed in as the parameter as you compute the answer, as long as
you restore it to its original form by the time the overall call is finished. You may assume that the list
passed in is not null, but it might be empty. Do not use any loops in solving this problem, it must be
solved recursively.

12

Write your solution to problem #5 here:

13

6. Binary Tree Programming
Write a method called add that takes as a parameter a reference to a second binary tree and that adds
the values in the second tree to this tree. If the method is called as follows:

tree1.add(tree2);

it should add all values in tree2 to the corresponding nodes in tree1. In other words, the value stored
at the root of tree2 should be added to the value stored at the root of tree1 and the values in tree2's
left and right subtrees should be added to the corresponding positions in tree1's left and right
subtrees. The values in tree2 should not be changed by your method.

If tree1 has a node that has no corresponding node in tree2, then that node is unchanged. For
example, if tree2 is empty, tree1 is not changed at all. It is also possible that tree2 will have one or
more nodes that have no corresponding node in tree1. For each such node, create a new node in
tree1 in the corresponding position with the value stored in tree2's node. For example:

14

Write your solution to problem #6 here:

15

This page intentionally left blank for scratch work

16

