CSE 123 Practice Final Exam Key

Section (e.g., AA): Student Number:

Do not turn the page until you are instructed to do so.

Name of Student: KEY

Rules/Guidelines:
e You must not begin working before time begins, and you must stop working promptly when time is called. Any

modifications to your exam (writing or erasing) before time begins or after time is called will result in a penalty.
e You are allowed one page of notes, no larger than 8.5 x 11 inches. You may not access any other resources or
use any electronic devices (including calculators, phones, or smart watches, among others) during the exam.
Using unauthorized resources or devices will result in a penalty.
e In general, you are limited to Java concepts or syntax covered in class. You may not use break, continue, a

return from a void method, try/catch, or Java 8 features.

e You are limited to the standard Java classes and methods listed on the provided reference sheet. You do not need
to write import statements.

e If you abandon one answer and write another, clearly cross out the answer(s) you do not want graded and draw
a circle or box around the answer you do want graded. When in doubt, we will grade the answer that appears in
the space indicated, and the first such answer if there is more than one.

If you require scratch paper, raise your hand and we will bring some to you.

If you write an answer on scratch paper, please write your name and clearly label which question you are
answering on the scratch paper, and clearly indicate on the question page that your answer is on scratch paper.
Staple all scratch paper you want graded to the end of the exam before turning in.

Answers must be written as proper Java code. Pseudocode or comments will not be graded.

The exam is not graded on code quality. You are not required to include comments.

You are also allowed to abbreviate "System.out.print" and "System.out.printin" as "S.o.p" and "S.o.pIn"
respectively. You may NOT use any other abbreviations.

Grading:
e Each problem will receive a single E/S/N grade.

o On problems 1 through 3, earning an E requires answering all parts correctly and earning an S requires
answering almost all parts correctly.

o On problems 4 through 6, earning an E requires an implementation that meets all stated requirements
and behaves exactly correctly in all cases. Earning an S requires an implementation that meets all stated
requirements and behaves exactly correctly in most cases or behaves nearly correctly in all cases.

e Minor syntax errors will be ignored as long as it is unambiguous what was intended (e.g. forgetting a semicolon,
misspelling a variable name where there is only one close option). Major syntax errors, or errors where it is
unclear what was intended, may have an impact on your grade.

Advice:
e Read all questions carefully. Be sure you understand the question before you begin your answer.
e The questions are not necessarily in order of difficulty. Feel free to skip around. Be sure you are able to at least
attempt every question.
Write clearly and legibly. We cannot award credit for answers we cannot read.
If you have questions, raise your hand to ask. The worst that can happen is we will say "I can’t answer that."
Ask questions as soon as you have them. Do not wait until you have several questions.

Initial here to indicate you have read and agreed to these rules:




1. Code Comprehension

Part A: For each of the following binary trees, indicate which type of traversal is shown: pre-order,

in-order, or post-order.

()
A~
<

T 5

_ -

GS 'ﬂ,:"‘_ 'ﬂ-z

197141105234

[J pre-order
in-order

[J post-order

012823151115

pre-order
[J in-order

[J post-order

7122194111820

pre-order
J in-order

[J post-order

Part B: Which of these statements are true? (Select all that apply.)

Abstract classes cannot be instantiated.
[CJ Each class can extend only one base class and implement only one interface.

A class can call its base class’s method using the super keyword.

If ClassC extends ClassB and ClassB extends ClassA, then an instance of ClassC can be
passed as a parameter to a method that expects an instance of ClassA.




Part C: Consider the following method in the IntTree class:
public int mystery(int limit) {
return mystery(limit, overallRoot);

private int mystery(int limit, IntTreeNode root) {
if (root == null) {
return 0;

int result = 0;
if (root.data <= limit) {
result = 1;

result += mystery(limit, root.left);
result += mystery(limit, root.right);
return result;

Draw a binary tree such that, if it were stored in the variable tree, the call tree.mystery(10) would
return 4.

One possible solution:




2. Code Tracing

Part A: For each of the following, draw the linked lists that result from starting with the lists shown on
the right and executing the code provided.

pl

& I3 7

p2.next.next = pl.next;
pl.next = null;

pl.next.next = p2.next;
p2.next = pl;

1

[=
R
|
Ll
L]

Pl

[:3— — 1 3 //;“f/ ListNode temp = p2.next.next;
p2.next.next = pl.next;

temp.next = pil;

p2 pl.next = null;
pl = temp;

Pl

pa




Part B: Consider the following classes:
public class Shape {
public void method1() {
System.out.println("Shape 1");
method3();

}

public void method3() {
System.out.println("Shape 3");

}

public class Circle extends Shape {
public void method2() {
System.out.println("Circle 2");

}

public void method3() {
System.out.println("Circle 3");

Assume the following variables have been defined:
Shape varl = new Rectangle();
Square var2 = new Square();
Shape var3 = new Circle();
Rectangle vard = new Square();

public class Rectangle extends Shape {
public void method3() {
System.out.println("Rect 3");
super.method3();

}

public class Square extends Rectangle {
public void method2() {
System.out.println("Square 2");

}

public void method3() {
System.out.println("Square 3");

For each of the following statements, Indicate what the output would be. If the statement would result in an
error, write “error” instead. (You may use a slash to indicate line breaks. For example, “line1/line2” indicates

two lines of output: “line1” and “line2.”)

varl.methodl(); Shape 1 / Rect 3 / Shape 3

var2.method3(); Square 3

var3.method1(); Shape 1 / Circle 3

var4.method2(); Error




Part C: Consider the following method:
public static void mystery(int n, int m) {
if (n >0 & m > 0) {
mystery(n / 10, m / 10);
}

if (n % 10 ==m % 10) {
System.out.print("=");
} else {
System.out.print("!");
}
}

For each of the following statements, indicate what the output would be.

mystery (0, 90) =

mystery (12, 22)

o —

mystery (582, 1522) !




3.Linked List Debugging

Consider a method in the LinkedIntList class called mergeWith that takes a LinkedIntList as a
parameter and moves the values in the parameter into this list. Assuming both this list and the
parameter list are in sorted order, after mergeWith executes, this list will contain the values from both
lists in sorted order and the parameter list will be empty.

For example, suppose the variables 1ist1 and 1ist2 contain the following lists:
listl = [-3 2 5 9 12]
list2 = [0 1 8 9 22]

After the call 1istl.mergeWith(1list2) executes, the variables 1ist1 and 1ist2 would contain:
listl = [-3 0125899 12 22]
list2 = []

On the other hand, if the lists were in their original state as above, then after the call
list2.mergeWith(list1) executes, the variables 1ist1 and 1ist2 would contain:
listl = []
list2 = [-3 012589 9 12 22]

Consider the following buggy implementation of mergeWith:
1 public void mergeWith(LinkedIntList other) {
2 if (front == null) {
3 front = other.front;
4 } else if (other.front != null) {
5 ListNode curr = front;
6 while (curr.next != null && other.front != null) {
7 if (curr.next.data > other.front.data) {
8 ListNode temp = curr.next;
9 curr.next = other.front;

10 other.front = other.front.next;
11 curr.next.next = temp;
12 }

13 curr = curr.next;

14 }

15

16 if (other.front != null) {

17 curr.next = other.front;
18 }

19 }

20 other.front = null;

21 }

This implementation contains a bug that is causing it to not work as intended. For example, given
listl and 1ist2 as above, listl.mergeWith(1list2) would produce the correct results, but
list2.mergeWith(1list1) would result in the following:

listl = []

list2 = [0 -3125 89 9 12 22]

(continued on next page...)



Annotate (write on) the code below to indicate how you would fix the bug. You may add (using arrows to
indicate where to insert), remove (by crossing out), or modify (with a combination) any code you
choose.

Be sure to clearly indicate where you would add/remove/change code in addition to what changes you
would make. (Incorrect or incomplete attempted fixes in the correct place may still earn an S.)

1 public void mergeWith(LinkedIntList other) {

2 if (front == null) {

3 front = other.front;

4 } else if (other.front != null) {

5 if (other.front.data < front.data) {

6 ListNode temp = front;

7 front = other.front;

8 other.front = other.front.next;

9 front.next = temp;

10 }

11 ListNode curr = front;

12 while (curr.next != null && other.front != null) {
13 if (curr.next.data > other.front.data) {
14 ListNode temp = curr.next;

15 curr.next = other.front;

16 other.front = other.front.next;
17 curr.next.next = temp;

18 }

19 curr = curr.next;

20 }

21

22 if (other.front != null) {

23 curr.next = other.front;

24 }

25 }

26 other.front = null;

27 }




4. Inheritance Programming

Consider the following class:
public class Beverage {
private double size;

public Beverage(double size) {
this.size = size;

}

public String toString() {
return getSize() + "oz beverage";

}

public double getSize() {
return size;

}

Write a new class called CoffeeDrink that represents a beverage containing coffee. CoffeeDrink
should extend Beverage but differ in the following ways:
e C(offeeDrink has a caffeine content (in mg) specified in the constructor as an integer
e (offeeDrink has a getCaffeine() method that returns the caffeine content of the drink
e (offeeDrink has an isCaffeinated() method that returns true if the drink contains at least
10mg of caffeine and false otherwise
e |f a CoffeeDrink is not caffeinated, the string representation of the drink ends with (decaf)
o The rest of the string representation is the same as any other Beverage
e (CoffeeDrink implements the Comparable interface; CoffeeDrinks are compared first by size
(smaller drinks are “less than” bigger drinks) then by caffeine content (less caffeine is “less than”
more caffeine)

To earn an E on this problem, your CoffeeDrink class must not duplicate any code from the Beverage
class.

Write your solution on the next page.



Write your solution to problem #4 here:

One possible solution:

public class CoffeeDrink extends Beverage implements Comparable<CoffeeDrink> {
private int caffeine;

public CoffeeDrink(double size, int caffeine) {
super(size);
this.caffeine = caffeine;

public boolean isCaffeinated() {
return caffeine »>= 10;

public int getCaffeine() { return caffeine; }

public String toString() {
String result = super.toString();
if (!isCaffeinated()) {
result += " (decaf)";

}

return result;

public int compareTo(CoffeeDrink other) {
if (this.getSize() > other.getSize()) {
return 1;
} else if (this.getSize() < other.getSize()) {
return -1;
} else {
return this.getCaffeine() - other.getCaffeine();

10



5. Recursive Programming

Write a recursive method called waysToClimb that takes two integer parameters, steps and max, and
computes all possible ways to climb a set of steps by taking strides of at least 1 and at most max stairs
at once. Your method should print out each possible way of climbing the stairs and return the total
number of ways that are found.

For example, the call waysToClimb(3, 3) would produce the following output:
[1, 1, 1]
[1, 2]
[2, 1]
[3]

This call would return the value 4, since there are four possible options. Notice that order matters in the
possibilities— [1, 2] and [2, 1] are considered different. Options should only consist of strides of at
least 1 step— do not include 0 or negative steps.

As another example, the call waysToClimb(5, 2) would produce the following output:
[1, 1, 1, 1, 1]
[1, 1, 1, 2]
[1, 1, 2, 1]
[1, 2, 1, 1]
[1, 2]
[2,
[ZJ
[2,

-

1]
2]
1]

-

NFRP P DNMNDNBR
-
=
-

-

This call would return the value 8.
You may assume that both steps and max are greater than 0. You may print the possibilities in any
order, but to earn an E, you must print all possibilities and you must not print any possibility more than

once.

To earn a grade other than N, your method must be implemented recursively, though you may also use
loops if you like.

Write your solution on the next page.

11



Write your solution to problem #5 here:

One possible solution:

public static int waysToClimb(int steps, int max) {
return waysToClimb(steps, max, @, new Stack<Integer>());

private static int waysToClimb(int steps, int max, int curr, Stack<Integer> plan) {
if (curr == steps) {
System.out.println(plan);
return 1;

int total = 9;
for (int i = 1; i <= max; i++) {
if (curr + i <= steps) {
plan.push(i);
total += waysToClimb(steps, max, curr + i, plan);
plan.pop();

}

return total;

12



6. Binary Tree Programming

Write a method called 1imitLeaves to be added to the IntTree class (see the reference sheet). This
method takes a single integer parameter, min, and modifies the tree so that no leaf node contains a
value that is less than min.

For example, suppose that the variable tree contains a reference to the following tree:

OO

The method call tree.limitLeaves(20) would result in tree referring to the following tree:

Notice that the leaf nodes containing the values 8, 12, and 19 were removed because they are less
than 20. Notice also that removing the node containing 12 created a new leaf node containing 17,
which was also removed.

Your method should not create any IntTreeNode objects or modify the data field of any existing
IntTreeNode objects; you should implement your method only by removing nodes from the existing
tree. You should not remove any nodes that are not necessary to produce a tree with no leaves less
than min. Specifically, you should only remove leaf nodes, or nodes that become leaf nodes after
removing other nodes.

Write your solution on the next page.

13



Write your solution to problem #6 here:

One possible solution:

public void limitLeaves(int min) {
overallRoot = limitLeaves(min, overallRoot);

private IntTreeNode limitLeaves(int min, IntTreeNode root) {
if (root == null) {
return null;

root.left = limitLeaves(min, root.left);

root.right = limitLeaves(min, root.right);

if (root.left == null && root.right == null && root.data < min) {
root = null;

}

return root;

14



