
Pre-Class Work 9: Recursion / Recursive Tracing

Introduction to Recursion [Background Reading]

� Motivation
Imagine, on a regular morning at UW, your Keurig broke so you decide to get some co�ee at the 
Starbucks Co�ee inside Suzzallo ☕ . Upon arrival, you notice a long line which extended from the 
Starbucks cashier all the way to the entrance of Suzzallo. You decide to line up and join the rest of 
your UW students in the wait, slowly inching forward every couple of minutes. 

After half an hour, you begin contemplating whether or not you should even stay in line. On one 
hand, you need your daily co�ee so that you can stay awake in lecture. On the other, you're going to 
be late for lecture if the line doesn't speed up soon! You want to �gure out your position in the line so 
that you can gauge whether or not it's worth it to stay in line. 

Assuming that the line is 0-based index meaning that for a line with  people, the person at the start 
of the line is in the  position and the person at the end of the line is in the  position, how 
would you go about �guring out what position you are in?

n
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Your �rst instinct might be to step out of line and begin counting from the front of the cashier all the 
way until you hit your position. For example, if the line looked like the following:



You would begin counting from Brett , then Miya , and then eventually land on Yourself ! Once you 
have landed back to Yourself , you will have concluded that you are in the  position (i.e. you are 
third in line). 

2nd

What you just performed is known as an iteration. Essentially what you just did was initialize a 



position and continuously increase that number until you landed on yourself! 

We can express this using a for-loop:

public int findPosition(List<String> line) {
    for (int position = 0; position < line.size(); position++) {
        String name = line.get(position);
        if (name.equals("Yourself")) {
            return position;
        }
    }
    return -1; // We'll return -1 to indicate that you are not in line
}

Anytime you are using a for-loop, you are starting at some position (usually the front) and iterating 
through the data. Great! Now that you know what position you are in line, you decide that you can 
wait a little longer since you are only third in line. However, there is one slight concern. 

We Stepped Out Of Line! 🙀 

Because you stepped out of line to count, the whole line of people behind you moved forward so if 
you want to get in line, you have to enter through the back of the line again! 😱

How would you have gone about �guring out your position without needing to iterate? 

One idea you might have would be to ask the person in front of you what position they are in. In this 
case, you would ask Miya  what position she is in. She would most likely shrug and say "I don't know, 
let me check" then she'll go ahead and ask the person in front of her what position they are in. Now, 
Miya  asks Brett  what position he is in. No one is in front of Brett  so he knows for sure that he is 
in the  position (i.e. he is the �rst person in line). Since he knows the answer, he can respond back 
to Miya  and tell Miya  that he is in the  position. 
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Now that Miya  knows that Brett  is in the  position, she can add 1 to obtain her own position! 
Miya  adds 1 and �gures out that she is in the  position and then lets you know that she is in the 

 position (i.e. she is the second person in line). Since you know Miya  is in the  position, then 
you can add 1 to her position and conclude that you are in the  position (i.e. you are the third 
person in line). 
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Wow, this is great! You �gured out your position in line without ever needing to step out of it. 

We Just Did Recursion!

In computer science terms, what you just performed is known as recursion. Notice how each person 
in front of you asked each other the same question. When you asked Miya , you asked what position 



she is in. When Miya  asked Brett , she asked what position he is in. The question being asked is 
recurring! 

The reason why the series of questions stopped recursing is because we hit our base case. In other 
words, since no one is in front of Brett , Brett  can just answer that he is at the start of the line. 

You might be wondering why you can't just ask the person in front of us what position you are in. 
Well, let's try it out! First, you would ask Miya  what position Yourself  is in. She would most likely 
shrug and say "I don't know, let me check" then she'll go ahead and ask the person in front of her 
what position is Yourself  in. Now, Miya  asks Brett  what position is Yourself  in. He would most 
likely shrug and say "I don't know, let me check". 

However, no one is in front of Brett  so he wouldn't have anyone to ask! He would probably turn 
back to Miya  and say I don't know what position Yourself  is in! Note that Brett  is fully aware that 
he is in the  position in line but that's not the question that Miya  asked him so he would never tell 
Miya  that information! 

0th

Idea of Recursion

The idea of recursion is to take a large task and break it up into a series of sub-tasks. In this case, the 
large task is �guring out what position you are in and we broke it down into a smaller task which was 
asking people what position they are in. Your smaller task can't be asking people what position you 
are in because that's what you have de�ned your large task to be already! 

Simply put, your large task and smaller task can't be the same task, otherwise that would mean our 
larger task was never broken up into smaller tasks!

� Why Recursion?
You might be wondering why we even need to learn recursion if iteration is equally as powerful. 
After all, in both the iterative and recursive approach, we �gured out that we were in the  
position. 

2nd

There are many reasons why recursion is an important topic to study. Firstly, many recursive 
solutions tend to take breathtakingly less code to write than iterative solutions which all 
programmers love since it means less typing. Secondly, in the coming weeks, we will be learning new 
data structures which are much easier to solve recursively. 

Finally, learning recursion will provide you with a di�erent perspective that you can apply to solve 
future problems! �



� Main Points
Recursion is a problem-solving technique that breaks down one big problem into smaller, 
similar sub-problems.

Iteration involves using loops to repeat a task, while recursion involves breaking down a 
problem into smaller, similar sub-problems and solving each sub-problem (and is often more 
concise).

In recursive problem-solving, we identify two components:

 A base case (the simplest case we can solve directly), and

A recursive case (a case we can break down into smaller sub-problems) -- in this case, 
we usually solve a similar problem just on a much smaller scale

To terminate, the recursive process must eventually reach the base case e.g. when there's no 
one in front of a person to ask about their position in line.

Recursion can give us a more elegant approach to solving some problems as well as a new 
way of thinking about them!



Anatomy of Recursion [Background Reading]

� Analyzing Recursive Code

So what does recursion look like in Java? Consider the following method:

// pre: n >= 1
public static int sumNumsUpTo(int n) {
    int sum = 0;
    for (int i = 1; i <= n; i++) {
        sum += i;
    }
    return sum;
}

In this method, we are given a parameter n  and we are summing up all integers between 1  to n  
(inclusive). We'll make the assumption that n  will always be greater than or equal to 1. For example, 
if n  is 4, then we would return 10 since 1 + 2 + 3 + 4 = 10. The current method is written 
iteratively. How would we express this recursively? 

Consider the following method:

// pre: n >= 1
public static int sumNumsUpTo(int n) {
    if (n == 1) {
        return 1;
    }  else {
        return n + sumNumsUpTo(n - 1);
    }
}

Immediately, you might notice that sumNumsUpTo()  calls itself in the else  case! When you see a 
method calling itself, this is known as a recursive call. Thus, the else  case is referred to as the 
recursive case, the one doing the actual recursion by calling the sub-task. If we take a look at the 
if  case, notice how we don't call sumNumsUpTo()  at all. This if  case is referred to as the base case. 

The base case of your code will be the one which ends your recursion so it should not do any sort 
of recursion at all! All recursive code must contain these two crucial components: the base case and 
the recursive case. It is entirely possible to have multiple base cases and recursive cases but for 
now we will only analyze code which has one base case and one recursive case.

Let's see what happens if n  is 4!

When you call sumNumsUpTo(4) , we will enter the else  case and return the following:



When you called sumNumsUpTo(4) , you ended up calling sumNumsUpTo(3)  so what does 
sumNumsUpTo(3)  return?

When you called sumNumsUpTo(3) , you ended up calling sumNumsUpTo(2)  so what does 
sumNumsUpTo(2)  return?

When you called sumNumsUpTo(3) , you ended up calling sumNumsUpTo(1)  so what does 
sumNumsUpTo(1)  return?



Nice! When we called sumNumsUpTo(1) , we hit a base case which stopped the recursion! Here, we 
see that sumNumsUpTo(1)  returns 1 so what does sumNumsUpTo(2)  do now?

sumNumsUpTo(2)  sees that sumNumsUpTo(1)  is 1 so it will return 2 + 1! Here, sumNumsUpTo(2)  
returns 3 so what does sumNumsUpTo(3)  do now?

sumNumsUpTo(3)  sees that sumNumsUpTo(2)  is 3 so it will return 3 + 3! Here, sumNumsUpTo(3)  
returns 6 so what does sumNumsUpTo(4)  do now?



sumNumsUpTo(4)  sees that sumNumsUpTo(3)  is 6 so it will return 4 + 6! Thus, when we called 
sumNumsUpTo(4) , the method will return the value 10!

Notice how whenever you made a recursive call, you are in a completely separate method. This is 
known as the call stack. Java's underlying implementation uses a Stack  to keep track of the 
methods that are being called. You can imagine each method literally being "stacked" on top of the 
other. 

We will de�ne our method as follows:

public static int sumNumsUpTo(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n + sumsNumsUpTo(n - 1);
    }
}

For example, let's set n  to be 4 again:





Any time a recursive call is made, Java stops all operations on its current method and goes to work 
on the method that you just called. When you called sumNumsUpTo(4) , the moment it sees that you 
made a call to sumNumsUpTo(3) , it will stop all operations it is doing on sumNumsUpTo(4)  and focus 
on working through sumNumUpsTo(3) . 



Hence, we see sumNumsUpTo(3)  literally being "stacked" on top of sumNumsUpTo(4) . Methods will 
continue being stacked on top of one another until we hit the base case which is when Java will 
"pop" the methods o� the call stack. 

Here is an illustration how the Java call stack would appear during the recursion:







� Main Points
When you see a method calling itself, this is known as a recursive call.

The base case of your code will be the one which ends your recursion so it should not do any 
sort of recursion at all!

All recursive code must contain a base case and a recursive case.

Any time a recursive call is made, Java stops all operations on its current method and goes to 
work on the method that you just called. 

During recursion, the call stack gets �lled with recursive calls from the bottom to the top, so 
when we "pop" or return items from the call stack, we will return the most recent recursive call.



Recursive Tracing [Discussion Question]

Question 1

No response

Question 2

No response

Question 3

No response

Question 4

No response

Question 5

No response

The following question will give you practice in tracing through recursive code.

Consider the following method:

public int recursiveMethod(int x, int y) {
    if (x < y) {
        return x;
    } else {
        return recursiveMethod(x - y, y);
    }
}

What gets returned from method(6, 13) ?

What gets returned from method(14, 10) ?

What gets returned from method(37, 10) ?

What gets returned from method(8, 2) ?

What gets returned from method(50, 7) ?


