
Pre-Class Work 5: Linked Nodes

Non-Contiguous Memory

So far, we have primarily seen how to use arrays to store a list of values using contiguous memory.
This means that the space taken up by the array in your computer is all in one large block. The
elements end up side-by-side in memory.

This structure is nice to randomly access elements, since we know exactly where to �nd it in the block
of memory for the array. Commonly we picture arrays like so:

Instead of this, an alternative is non-contiguous memory. Here, the elements of our list are
scattered throughout memory, we cannot quickly �nd a random element like we could with our
blocks of memory.

Rather, we need some way for each element to "link" to the next element to continue the list. You
could imagine our elements now look like this:

We'll learn more about some of the advantages and disadvantages of these linked structures in future
weeks, but for now think about how much easier it is to insert something in the middle of this list
than an array.

Rather than shifting all the other elements to the left or right, we can just change two links to add an
element in the middle!

Linked nodes are an alternative to arrays for representing an ordered sequence of elements.
Whereas arrays store elements side-by-side in memory, linked nodes store each element in their own
"node" object and "link" them together using references.

� Main Points
Arrays use contiguous memory, meaning they store elements side-by-side in memory.

Linked nodes are an alternative to arrays that store each element in their own "node" object
and "link" them together using references.

This is referred to as non-contiguous memory. We cannot quickly �nd a random element like
we can in arrays because elements of our list are scattered throughout memory.

It's easier to insert something in the middle of a list than in an array! We will learn more
advantages and disadvantages of lists later.

ListNode Class

Remember learning about Queue s in CSE 122 and how we used the LinkedList implementation?
This week we'll dive into how exactly a LinkedList works by implementing our own version,
LinkedIntList . We'll dive deeper into LinkedIntList the rest of this week, but for now we'll work
with individual nodes like we described in the previous slide.

To represent these "linked" elements, we will use linked nodes. Each linked node stores its element
data and a "link" to the next node using references.

For example, we will use the following ListNode class to represent linked nodes. The ListNode
class contains 2 �elds:

The value of this node's element as the data �eld.

A reference to a next node.

// Class that represents a single node containing an
// integer value.
public class ListNode {
 public final int data;
 public ListNode next;

 // Constructs a ListNode with the given data
 public ListNode(int data) {
 // Sets the next field to null, meaning there
 // is no next linked node.
 this(data, null);
 }

 // Constructs a ListNode with the given data
 // and given next node.
 public ListNode(int data, ListNode next) {
 this.data = data;
 this.next = next;
 }
}

It might feel a bit weird for the ListNode class to contain a �eld referencing itself, but this is allowed
in Java. We use the next �eld to access the node in the list after the current one.

Remember that this is only a reference and does not store the actual object itself. We'll see some
examples of how to use these in the next slide.

The data �eld is final to prevent changes to data after the ListNode is created. In this class, we'll
focus on changing the value of the next �eld in order to solidify our understanding of reference
semantics.

Note that the �elds of the ListNode class are declared public . In most situations, this would allow clients to
modify the ListNode values and break the class invariants needed to ensure the program works correctly!
But we'll later learn ways to hide the ListNode implementation from clients.

null Review
You may have seen null as a programmer already. null is de�ned as the "absence of a value", it is
treated as a special term by programmers to convey that there is no value. We use it frequently with
linked nodes to represent the end of our list.

� Main Points
We use linked nodes to build linked data structures like LinkedLists . Each linked node has
two �elds: the data �eld, which stores the value of the node, and the next �eld, which is a
reference to the next node in the sequence.

Fields that are objects, like next , store a reference to an object in memory rather than the
object itself.

: The ListNode class represents a single node in a linked list and has two constructors:

One that constructs a node with just given data (the next node is null).

One that constructs a node with given data and a node that comes next.

We declared the data �eld as final so we cannot change the data once we make a ListNode
object.

We use null frequently with linked nodes to represent the end of our list.

ListNode Review

ListNode Review
These questions are designed to assess your current understanding of linked nodes. It is highly
recommended that you draw out what the result of the code below would look like. For all the
questions below assume the following piece of code has been run:

public class Example {
 public static void main(String[] args) {
 ListNode a = new ListNode(6);
 ListNode b = new ListNode(15);
 ListNode c = new ListNode(-3, b);
 ListNode d = new ListNode(14, c);
 a.next = d;

 ListNode temp = a;
 while (temp != null) {
 System.out.println(temp.data);
 temp = temp.next;
 }
 }

 // The ListNode class we showed in the previous slide.
 // WARNING: IGNORE STATIC HERE, your Node classes should be in their own file.
 // This is just a hack to run on Ed.
 // Class that represents a single node containing an
 // integer value.
 public class ListNode {
 public final int data;
 public ListNode next;

 // Constructs a ListNode with the given data
 public ListNode(int data) {
 // Sets the next field to null, meaning there
 // is no next linked node.
 this(data, null);
 }

 // Constructs a ListNode with the given data
 // and given next node.
 public ListNode(int data, ListNode next) {
 this.data = data;
 this.next = next;
 }
 }
}

Question 1

Question 2

Question 3

What would System.out.println(a.data) output?

14

6

-3

15

What would System.out.println(a.next.next.data) output?

14

6

-3

15

Which of the following produce the value 15?

a.data

a.next.data

a.next.next.data

a.next.next.next.data

ListNode Programming Review

Modify the given program so that the list currently in the form a -> [1, 2, 4] , instead looks like a
-> [1, 2, 3, 4] .

You should only create one new ListNode to do this. You should not modify the data �eld of any
existing node and should instead modify the next �elds.

Implementation Hints:

How many .next s from a is the 4 node?

What .next s do you need to change?

