
Pre-Class Work 4: Comparable / Abstract Classes

Comparable [Background Reading]

� Motivation
As you begin to gain more experience in writing classes, one of the questions you might have asked
yourself is how we can compare two instances of a class.

For example, suppose you had a class called Academic which represents an academic member of the
UW community (whether it be student or faculty) and that class stored a person's ID and their name:

public class Academic {
 private int id;
 private String name;

 public Academic(int id, String name) {
 this.id = id;
 this.name = name;
 }

 @Override
 public String toString() {
 return "name: " + name + ", id: " + id;
 }
}

Now, we can create some academic people:

public class Client {
 public static void main(String[] args) {
 Academic brett = new Academic(491, "Brett Wortzman");
 Academic kasey = new Academic(175, "Kasey Champion");
 Academic hunter = new Academic(924, "Hunter Schafer");
 Academic miya = new Academic(328, "Miya Natsuhara");
 }
}

If we threw each Academic person into a TreeSet , we should ideally see "Kasey Champion, Miya
Natsuhara, Brett Wortzman, Hunter Schafer" in that order, since Kasey has the earlier ID (lowest ID
value) while Hunter Schafer has the later ID (greatest ID value).

At the moment though, if we added each person into a TreeSet , we would encounter an error:

import java.util.*;

public class Client {
 public static void main(String[] args) {
 Academic brett = new Academic(491, "Brett Wortzman");
 Academic kasey = new Academic(175, "Kasey Champion");
 Academic hunter = new Academic(924, "Hunter Schafer");
 Academic miya = new Academic(328, "Miya Natsuhara");
 Set<Academic> set = new TreeSet<>();
 set.add(brett);
 set.add(kasey);
 set.add(hunter);
 set.add(miya);
 for (Academic person : set) {
 System.out.println(person);
 }
 }
}

While our code compiles, this is what happens during runtime

Exception in thread "main" java.lang.ClassCastException: class Academic cannot be cast to class java

The reason why we get an error is because the TreeSet has no idea how to arrange each Academic !
We never de�ned a concrete way for the TreeSet to sort each person. How can we �x this?

� Comparable Interface
The Comparable interface in Java is used to de�ne a natural ordering for a class. Once implemented,
it is used to provide a way for objects of a class to compare with one another, so that they can be
sorted. To implement Comparable is relatively straightforward as we only need to provide an
implementation for one method: compareTo(T other) .

To implement the Comparable interface, you need to include the keywords implements
Comparable<T> . Note that T represents the class you are comparing against (should be the same
type as the class it is being written in!).

For example, consider the code below:

public class Academic implements Comparable<Academic> {
 private int id;
 private String name;

 public Academic(int id, String name) {
 this.id = id;
 this.name = name;
 }

 @Override

 public String toString() {
 return "name: " + name + ", id: " + id;
 }

 @Override
 public int compareTo(Academic other) {
 // TODO
 }
}

Here, if we want to implement the Comparable interface for Academic , we need to say implements
Comparable<Academic> . Now, the only method we need to override now is the compareTo()
method.

The compareTo() method compares the current object to another object of the same class and
returns an integer indicating their relative order. The compareTo() method should return a
negative integer if the current object is less than the speci�ed object, zero if the current
object is equal to the speci�ed object, and a positive integer if the current object is greater
than the speci�ed object.

Conventionally speaking, you will see many implementations compareTo() use -1 as the negative
integer and 1 as the positive integer.

If we want to create an order based on the ID of each person, how can we do that? Well, we can do so
with the following:

@Override
public int compareTo(Academic other) {
 if (this.id < other.id) {
 return -1;
 } else if (this.id == other.id) {
 return 0;
 } else {
 return 1;
 }
}

Now that we have implemented the compareTo method, we can throw Academic into a TreeSet
and it will automatically sort the elements out! Each element inside the TreeSet will use the
compareTo method to compare themselves to the other elements.

For example, consider the following:

Academic brett = new Academic(491, "Brett Wortzman");
Academic kasey = new Academic(175, "Kasey Champion");
Set<Academic> set = new TreeSet<>();
set.add(person1);
set.add(person2);

Under the hood brett and kasey will compare themselves to each other with the compareTo()

method.

 Let's consider the perspective of brett . brett has an ID of 491 and kasey has an ID of 175. When
brett calls compareTo() on kasey , the condition this.id < other.id will be false for brett so
he will return a 1 indicating that he should be "greater than" kasey .

Conversely, in the perspective of kasey , when kasey calls compareTo() on brett , the else
condition will be false for kasey so she will return a -1 indicating that she is "less than" brett . With
this information, the TreeSet knows to put brett earlier in the collection and kasey later in the
collection.

If you printed the set out, you would see:

["name: Kasey Champion, id: 175", "name: Brett Wortzman, id: 491"]

If you wanted brett to be appear earlier in the list, we can negate the return values:

public int compareTo(Academic other) {
 if (this.id < other.id) {
 return 1;
 } else if (this.id == other.id) {
 return 0;
 } else {
 return -1;
 }
}

With this implementation, the set would printed out would be:

["name: Brett Wortzman, id: 491", "name: Kasey Champion, id: 175"]

In this implementation, we are saying that ID values that are higher should be considered "less than"
ID values which are lower.

✏ compareTo pattern
In cases where you are only comparing a single value, we can actually use the values to return a
result! This is a common pattern you'll see in many implementations of compareTo . More concretely,
instead of all of the if/else statements, we can instead have:

public int compareTo(Academic other) {
 return this.id - other.id;
}

Here, we perform a calculation and use that result as our return value. Why does this work?

Recall that when implementing compareTo , we only need a negative integer to indicate if an object is
"less than" another object. For something to be considered "greater than" we use a positive integer. It
doesn't actually matter what value you use for negative and positive integers, as long as they are
negative or positive!

Here, if this.id is less than other.id then this.id - other.id will return a negative value which
will indicate that this object is "less than" the other object. The same principle applies for when
this.id is greater than other.id since this.id - other.id would return a positive value!

Finally, notice that if both ID values are equal, it will return a 0 since this.id - other.id would
cancel each other out!

� Main Points
When working with classes, we often want to compare instances of a class, such as by sorting
objects or de�ning their natural ordering.

We can use the Comparable interface to de�ne a natural ordering for our class, so our
class can be compared and sorted.

To implement Comparable , our class should include the declaration implements
Comparable<T> , where T is the class being compared e.g. public class Academic
implements Comparable<Academic> {}

When implementing the Comparable interface, we should make sure to include the method
compareTo(T other) in our class.

The compareTo(T other) method compares the current object to another object of the same
class and returns an integer.

This integer is negative if the current object is less than the other object.

This integer is positive if the current object is greater than the other object.

This integer is zero if the current object is equal to the other object.

After our class implements Comparable , we can easily sort objects in our class and we will
know that data structures such as TreeSet s will properly sort objects in our class!

Abstract Classes [Background Reading]

We can think of abstract classes as a combination of two things we have learned about already:
inheritance and interfaces. Let's try to understand why abstract classes are useful with an example.

� Shapes ⚪
Imagine that you are working for a graphic design company, Champortzman Designs. They want you
to come up with a way to represent a bunch of shapes, which have a certain color and opacity. You
start with the following attempt of just a square and a circle:

public class Square {
 private String color;
 private double opacity;
 private double sideLength;

 public Square(String color, double opacity, double sideLength) {
 this.color = color;
 this.opacity = opacity;
 this.sideLength = sideLength;
 }

 public String getColor() {
 return color;
 }

 public double getArea() {
 return sideLength * sideLength;
 }

 public double getDiagonal() {
 return Math.sqrt(2 * sidelength * sideLength);
 }
}

public class Circle {
 private String color;
 private double opacity;
 private double radius;

 public Circle(String color, double opacity, double radius) {
 this.color = color;
 this.opacity = opacity;
 this.sideLength = radius;
 }

 public String getColor() {
 return color;
 }

 public double getArea() {
 return Math.PI * radius * radius;
 }

 public double getCircumference() {
 return 2 * Math.PI * radius;
 }
}

These two classes de�nitely get the job done for squares and circles, but notice how much they share
in common! They share two �elds (color and opacity), the exact same method and
implementation for getColor() , and the same method signatures for draw() and getArea() !

How do we deal with this overlap? Abstract Classes!

� Abstract Classes
Let's take a look at a possible abstract class for our shapes above:

public abstract class Shape {
 private String color;
 private double opacity;

 public abstract double getArea();

 public Shape(String color, double opacity) {
 this.color = color;
 this.opacity = opacity;
 }

 public String getColor() {
 return color;
 }
}

Let's notice a couple of key features of this class

The class must contain the abstract keyword between public and class

Methods that do not contain an implementation must contain the abstract keyword between
public and the return type

Fields can be declared the same way as you would in a non-abstract class

Non-abstract methods can be declared and implemented as you would in a non-abstract class

Constructors follow all of the normal rules, except that they may not be called at runtime!

Take a look at the Shape abstract class. What parts are similar to an interface (like Comparable)?
What parts are similar to a superclass like the TV Show example from lecture?

Abstract classes like Shape are useful when you want to provide common implementation to
certain classes and guarantee that other methods are implemented.

Let's see how Shape changes our other two classes.

public class Square extends Shape {
 private double sideLength;

 public Square(String color, double opacity, double sideLength) {
 super(color, opacity);
 this.sideLength = sideLength;
 }

 public double getArea() {
 return sideLength * sideLength;
 }

 public double getDiagonal() {
 return Math.sqrt(2 * sidelength * sideLength);
 }
}

public class Circle extends Shape {
 private double radius;

 public Square(String color, double opacity, double sideLength) {
 super(color, opacity);
 this.radius = radius;
 }

 public double getArea() {
 return Math.PI * radius * radius;
 }

 public double getCircumference() {
 return 2 * Math.PI * radius;
 }
}

Notice that since Circle and Square extends Shape , they do not need the �elds color or
opacity or the method getColor() . It gets carried over from Shape (just like a subclass would).
However, these classes do need to implement getArea() (just like a class that implements an
interface). With this example, we can also see why an unusable constructor in an abstract class might
be helpful.

Using the super keyword, Circle and Square only need to worry about the �elds that they add on
(that are unique to them). The abstract class constructor will take care of all of the common �elds.

Notice that we use the extends keyword, even though we also have some implements
functionality!

Make sure that the call to the parent constructor using super is always the �rst line of your
constructor!

� Main Points
Abstract classes contain both

Fields and fully implemented methods

abstract methods that are described by only a method signature

Constructors that can initialize �elds (but may not be used since abstract classes may not
be instantiated)

Classes that extend abstract classes

Have access to �elds and fully implemented methods of the abstract class

Must implement any abstract methods declared by the abstract class

May use the constructor of the abstract class using the super keyword

Academic [Programming Question]

Modify the Comparable interface in Acacdemic such that higher ID values are considered "less than"
lower ID values and lower ID values are considered "greater than" higher ID values. Implement this
without using an if/else structure.

Owls [Programming Question]

Implement the Comparable interface in the class Owl . Most of the class has been written you just
need to write the compareTo() method. The order of the Owls should be sorted in reverse
alphabetical order.

Remember that the compareTo() method returns a negative integer, zero, or a positive integer if the
current object is less than, equal to, or greater than the given object.

More Birds! [Programming Question]

Write another class called Duck that extends the Bird abstract class.

The new Duck class should have the two following requirements:

1. Include an extra method called swim() for the Duck class. This method should print the name
of the duck and that it's swimming around. For example, if I create a Duck with the name
"Alfred". Calling swim() should produce the output:

"Alfred the duck is swimming around."

The name of the bird should be interchangeable depending on what was given in the
constructor.

2. Implement the fly() method to print the wingspan of the bird and to show that the bird is
�ying. For example, if we called fly() on Alfred, it should produce the output:

"Alfred the duck flies with its 7 inch wings at a high speed."

 The length of the wingspan should depends on the value that is given in the constructor.

