
Pre-Class Work 3: Inheritance / Polymorphism

Inheritance [Background Reading]

� Motivation
Imagine that you were the manager of a highly renowned restaurant ��. You have your chefs and
your servers, both of which work 40 hours a week, have an hourly rate of $50, and have 10 vacation
days. The main di�erence between the chef and the server is that the chef can cook food while the
server can collect tips.

Consider the following code snippets below:

public class Chef {
 public int getHours() {
 return 40;
 }

 public double getHourlyRate() {
 return 50.0;
 }

 public int getVacationDays() {
 return 10;
 }

 public void cookFood(String order) {
 System.out.println(order + " order up!");
 }
}

public class Server {
 public int getHours() {
 return 40;
 }

 public double getHourlyRate() {
 return 50.0;
 }

 public int getVacationDays() {
 return 10;
 }

 public void collectTips(double amount) {
 System.out.printf("Ch-ching!! $%.2f\n", amount);

 }
}

What do you notice between the two classes? The �rst three methods in both classes are the exact
same! This introduces some concerns regarding code maintenance.

For example, if we wanted to increase the vacation days of all of workers to 15 days, you would have
to change it in both the Chef and the Server class. While this is okay, you could imagine why this
becomes di�cult to maintain if we were to introduce more workers such as a cashier and
dishwasher.

This is where we can introduce inheritance to help us.

Inheritance is a useful tool for organizing and structuring code in object-oriented programming. In
particular, it allows you to create new classes that are based on existing ones. By creating a new class
that inherits from an existing class, you can reuse the code from the existing class and add or modify
the behavior as needed. This can save a lot of time and e�ort, as you don't have to write the same
code again from scratch.

Inheritance also makes it easier to understand and maintain code, as it allows you to create a
hierarchy of classes that re�ect the relationships between di�erent types of objects in your program.
Finally, inheritance can be used to implement polymorphism, which allows a program to treat
objects of di�erent types in a uniform way (more information on this in the next reading).

� Using extends
Inheritance is a way to form an is-a relationship between two classes. To form an is-a relationship,
you need to include the keyword extends . If you have a class called A and you write a new class
public class B extends A , you are saying that B is a sub-class of A and that A is a super-class
of B . This relationship says that a B "is a" A , but is a more specialized version. For example you
might have Tiger extend Cat since a tiger is a specialized version of a cat.

By default, a sub-class gets a copy of all the public methods de�ned in the super-class (we say the
sub-class inherits the super-classes methods). The sub-class is able to override the methods to
provide its own behaviors (This is a form of polymorphism which we will cover in the next reading).

A sub-class is able to access the methods of its super-class. If the sub-class wants to call
exampleMethod on the super-class, it writes the code super.exampleMethod(); .

A class can only extend up to one super-class.

If a class does not extend the class, it extends the class Object by default. This is why you need to override
the toString() method, or else you'll inherit the one from the Object class.

To solidify this, let's take the code snippet above and form an inheritance relationship. First, let's

consider what Chef and Server have in common. As stated, they both share the �rst three methods
in their class. More importantly, they are both employees for your restaurant. We can make a
separate class called Employee which contain these shared methods:

public class Employee {
 public int getHours() {
 return 40;
 }

 public double getHourlyRate() {
 return 50.0;
 }

 public int getVacationDays() {
 return 10;
 }
}

public class Chef extends Employee {
 public void cookFood(String order) {
 System.out.println(order + " order up!");
 }
}

public class Server extends Employee {
 public void collectTips(double amount) {
 System.out.printf("Ch-ching!! $%.2f\n", amount);
 }
}

All Employee s work 40 hours a week, have an hourly rate of $50, and have 10 vacation days. We can
represent this inheritance relationship by drawing an inheritance tree:

Here, we are saying that Chef and Server are both Employee s, but they are specialized versions. A
Server does everything an Employee does, but they can also collect tips. Similarly, a Chef does
everything an Employee does, but they can cook food. Both Server and Chef inherit the methods
of Employee . Now, if we wanted to give a Server and Chef more vacation days, we only need to
make that modi�cation in one class, the Employee class!

For example, if we wanted to give all Employee s 15 vacation days:

public class Employee {
 public int getHours() {
 return 40;
 }

 public double getHourlyRate() {
 return 50.0;
 }

 public int getVacationDays() {
 return 15; // Give all employees 15 vacation days.
 }
}

� Using super
One thing to note is that when a subclass is created (i.e. when you use extends), it gains access to all
the methods. However, constructors are not inherited by subclasses. The constructor of the
superclass can still be called from within the subclass, but it is not automatically available to the

subclass like other class members. You can use the super keyword to refer to the superclass'
constructor. For example:

public class Employee {
 private String employeeName;

 public Employee(String employeeName) {
 this.employeeName = employeeName;
 }

 public int getHours() {
 return 40;
 }

 public double getHourlyRate() {
 return 50.0;
 }

 public int getVacationDays() {
 return 10;
 }

 public String getEmployeeName() {
 return employeeName;
 }
}

public class Chef extends Employee {
 private int ordersFinished;

 public Chef(String employeeName) {
 super(employeeName);
 ordersFinished = 0;
 }

 public void cookFood(String order) {
 System.out.println(order + " order up!");
 ordersFinished++;
 System.out.println(super.getEmployeeName() + " has finished " + ordersFinished + " orders so far!"
 }
}

public class Server extends Employee {
 private double totalTipsCollected;

 public Server(String employeeName) {
 super(employeeName);
 totalTipsCollected = 0.0;
 }

 public void collectTips(double amount) {
 System.out.printf("Ch-ching!! $%.2f\n", amount);

 totalTipsCollected += amount;
 System.out.printf(super.getEmployeeName() + " has collected $%.2f worth of tips so far!\n", totalTipsCollected)
 }
}

Notice here that Chef and Server both use the super keyword to refer to methods in the
Employee class. The syntax is similar to using the this keyword but the di�erence is super is
referring to the superclass and not this class.

One thing you might �nd interesting is the �eld employeeName in the Employee class. While �elds
are inherited, the subclass cannot directly access those �elds. To read the value of a �eld, the
subclass again needs to use the super keyword. This is a case where it is bene�cial for the superclass
to provide getter methods which in our case is getEmployeeName() .

Now, both Chef and Server can read the �eld employeeName by calling
super.getEmployeeName() .

Now, what if we wanted to increase the hourly rate of a Chef but keep the hourly rate of the Server
of a standard Employee ? This is a case where we want to customize the behavior of a speci�c
method so to do this, we can provide the Chef with their own getHourlyRate() method to
override the getHourlyRate() in Employee .

In general, you can override the methods of the superclass in the subclass to customize the behavior
of a method for a speci�c subclass. Let's say we wanted to increase the hourly rate of our Chef to
$500:

public class Employee {
 private String employeeName;

 public Employee(String employeeName) {
 this.employeeName = employeeName;
 }

 public int getHours() {
 return 40;
 }

 public double getHourlyRate() {
 return 50.0;
 }

 public int getVacationDays() {
 return 10;
 }

 public String getEmployeeName() {
 return employeeName;
 }
}

public class Chef extends Employee {
 private int ordersFinished;

 public Chef(String employeeName) {
 super(employeeName);
 ordersFinished = 0;
 }

 public void cookFood(String order) {
 System.out.println(order + " order up!");
 ordersFinished++;
 System.out.println(super.getEmployeeName() + " has finished " + ordersFinished + " orders so far!"
 }

 public double getHourlyRate() {
 return 500.0;
 }
}

Here, we are reimplementing an inherited method from a superclass. We are overriding the
getHourlyRate() method in Chef to change the behavior of the inherited method.

While optional, if you want to make this super explicit, you can also include the tag @Override above method:
@Override

public double getHourlyRate() {

 return 500.0;
}

Another approach we can do it modify the Chef 's hourly rate to scale with the hourly rate of a
standard Employee . For example:

public class Chef extends Employee {
 private int ordersFinished;

 public Chef(String employeeName) {
 super(employeeName);
 ordersFinished = 0;
 }

 public void cookFood(String order) {
 System.out.println(order + " order up!");
 ordersFinished++;
 System.out.println(super.getEmployeeName() + " has finished " + ordersFinished + " orders so far!"
 }

 public double getHourlyRate() {
 return super.getHourlyRate() * 10;
 }
}

In this code snippet, a Chef 's hourly rate is 10 times the rate of a standard Employee . Thus, when
we change getHourlyRate() in the Employee class, it will also increase the hourly rate of a Chef !
To visually see this, we have provided a client class in the next slide for you to execute.

� Main Points
Inheritance allows us to create new classes based on existing ones. We form an is-a
relationship between two classes e.g. a Server is-an Employee .

To allow for one class to inherit from another, we use the extends keyword when creating our
class. public class B extends A indicates that class B is a sub-class of class A and that class
A is a super-class of class B.

Sub-classes inherit all the public methods from their super-class. They can use and/or
override these methods.

 You can put @Override above a method in the sub-class to explicitly indicate that you
are overriding a method from the super-class.

This is a form of polymorphism, allowing di�erent behavior for subclasses while still
having a common interface.

 Constructors are not inherited by sub-classes, but we can call a superclass constructor
using super() in the sub-class's constructor to initialize �elds inherited from the super-
class.

Within the sub-class, we can call methods from the super-class by using the super()
keyword within a method or constructor.

Inheritance [Programming Example]

This slide contains the full code example from the previous reading. Feel free to look over the classes
and try running the client!

Compiler Error vs. Runtime Error [Background Reading]

� Declared Type and Actual Type
In the previous slide, whenever we would create an Employee , Chef , or Server , we made the
declared type and object type (also known as actual type), the same:

Employee standardEmployee = new Employee("Frankie Blaze");
Server leadServer = new Server("Sam Taylor");
Chef headChef = new Chef("Julia Child");

However, we don't need the declared type and actual type to be the same. Recall that a Chef is an
Employee and a Server is an Employee . Thus, we can declare we are creating Employee s but have
the actual type be Server and Chef :

Employee standardEmployee = new Employee("Frankie Blaze");
Employee leadServer = new Server("Sam Taylor");
Employee headChef = new Chef("Julia Child");

This introduces some interesting scenarios. Let's investigate using headChef . What do you think
would happen if we did:

headChef.getEmployeeName();

If you think this would still compile, you are correct! Now, consider the next line:

headChef.cookFood("Potatoes");

This line will throw an error, speci�cally a compiler error! You might be wondering why since in the
Chef class we have a method cookFood(String order) which a Chef should be able to call! Let's
revisit our variable initialization:

Employee headChef = new Chef("Julia Child");

This syntax should look familiar to you! The declared type (left-side of the "=") of a variable in Java
determines the methods that can be called on that variable. If the compiler cannot �nd a method
being called on a variable in the declared type or any of its superclasses, it will give an error.

For example, if you have a variable of type List (an interface) and you call the add method on it,
the compiler will check if the List interface or any of its superclasses de�ne the add method. If the
add method is found, the code will compile.

At runtime, the actual type of the object that the variable refers to (also known as the "runtime type")
will be used to determine which version of the method to execute.

For example, if the runtime type of the object is ArrayList , the add method from the ArrayList
class will be executed. If the method is not found in the runtime type, the inheritance hierarchy will
be searched for a superclass that de�nes the method. In this case, since the code compiled without
any errors, it is guaranteed that the add method will be found at runtime.

If you wanted access to all methods of an ArrayList , you would want your declared type to be
ArrayList :

List<Integer> list1 = new ArrayList<>(); // Methods in List interface
ArrayList<Integer> list2 = new ArrayList<>(); // All methods of ArrayList

Because the declared type of headChef is an Employee , the only methods we can execute are those
of Employee ! Thus, headChef can't call cookFood(String order) because that method does not
exist in Employee . There are a couple of ways to go about �xing this. The �rst way is just to have the
declared type be Chef which we did earlier:

Chef headChef = new Chef("Julia Child");

The second way is to use type casting:

� Casting
In Java, type casting is the process of treating an object of one type as if it were an object of another
type. This is done by using the type in parentheses followed by the name of the object being cast.

For example, consider the following code:

Employee headChef = new Chef("Julia Child");
((Chef) headChef).cookFood("Potatoes");

This will compile! Now, even though the declared type of headChef is Employee , we type cast
headChef to be Chef which gives it access to the cookFood(String order) method! Note that type
casting does not persist. When we cast headChef to Chef , that does not permanently change the
headChef to become a Chef !

Employee headChef = new Chef("Julia Child");
((Chef) headChef).cookFood("Potatoes");
headChef.cookFood("Potatoes"); // THIS WILL CAUSE AN ERROR

Type casting can be useful when you need to call a method on an object that is not de�ned in its
actual type, but is de�ned in a super class or interface. However, it can also be dangerous, as it can
cause errors if the object being cast is not actually an instance of the type being cast to.

� Compiler Error vs Runtime Error

When working with type casting, you will encounter two types of error: compiler error and
runtime error.

First, compiler errors. A compiler error occurs when the code does not follow the rules of the Java
language and cannot be compiled. This can happen when your cast type or declared type does not
implement the method that a client is trying to execute.

For example:

Chef headChef = new Chef("Julia Child");
System.out.println(((Employee) headChef).getEmployeeName()); // OK
((Employee) headChef).cookFood("Potatoes"); // The cast type does not implement cookFood so this will cause a compile

Employee headChef = new Chef("Julia Child");
headChef.cookFood("Potatoes"); // The declared type (Employee) does not implement cookFood so this will cause a compi

On the other hand, a runtime error occurs when the code compiles and runs correctly, but an error
occurs while the program is executing. This can happen when you use type casting to cast a variable
to a type that it is not actually an instance of.

For example:

// The following code will compile but it just won't execute.
Employee employeeOfTheMonth = new Employee("Frankie Blaze");
((Chef) employeeOfTheMonth).cookFood("Potatoes"); // An Employee is not a Chef! Thus, we can't cast Employee to be Ch

Learning to distinguish between a compiler error and runtime error takes practice. The following
image below helps outline the thought process you should be taking in order to help you �gure out
whether something is a compiler error or runtime error:

As we can see in the image, we will �rst de�ne a few things.

We will declare the variable with the line DeclaredType name = new ObjectType();

Then we will call the method with the line name.method();

Then we will cast the object then call the method with the line ((CastToType)name).method();

As we go through our �owchart, we will �rst ask whether we are casting.

If we are casting, then we will ask if CastToType contains the method

If CastToType contains the method, then we will ask if we can cast ObjectType to
CastToType

If we can cast ObjectType to CastToType , then we will execute the method of
ObjectType �

If we cannot cast ObjectType to CastToType , then we will get a runtime error �

If CastToType does not contain the method, then we will get a compiler error. �

If we are not casting, then we will ask if DeclaredType contains the method

If DeclaredType contains the method, then we will execute the method of ObjectType �

If DeclaredType does not contain the method, then we will get a compiler error. �

� Main Points
The declared type of a variable determines the methods you can call on that variable at
compile time, while the actual type (runtime type) of the object determines which method
implementation is executed at runtime.

We can use declared types to create hierarchies of objects e.g. a Chef is an Employee ,
so we can declare a Chef as an Employee .

 A compiler error happens when the code cannot be compiled and happens when the
declared type or cast type doesn't implement the method being called.

A runtime error happens when the code successfully compiles but there's an issue while
executing. This usually happens when using type casting to cast an object to a type that it is not
actually an instance of.

Type casting is when we treat an object of one type as if it were an object of another type. We
use the type in parentheses and then the object's name, such as
((CastToType)name).method() .

Polymorphism [Background Reading]

Motivation
Polymorphism is often used in conjunction with inheritance so it's natural to include both topics in
the same conversation. Polymorphism allows for the same interface to be used to invoke methods
on objects of di�erent types.

For example, consider a program that needs to perform some action on a collection of objects.
Without polymorphism, the program would need to have a separate block of code for each type of
object in the collection. You could imagine why this could become cumbersome once the number of
object types grows.

With polymorphism however, the program can simply iterate over the collection and invoke a single
method on each object, without needing to know the speci�c type of each object.

Simply put, polymorphism can reduce the amount of code that needs to be written and maintained,
and make it easier to add new types of objects to the program.

Method Overriding
The �rst type of polymorphism which we brie�y touched on when discussing inheritance is
method overriding. This is when a subclass overrides a method of its superclass by providing a
di�erent implementation.

For example:

public class Animal {
 public void speak() {
 System.out.println("Random animal noise");
 }
}

public class Dog extends Animal {
 @Override
 public void speak() {
 System.out.println("Bark!");
 }
}

Method Overloading
The second type of polymorphism is method overloading. This is when multiple methods of the
same name have di�erent method signatures. When a method is invoked, the Java compiler will
determine the best �t method to invoke based on the parameters.

For example:

public class Animal {
 public void speak() {
 System.out.println("Random animal noise");
 }

 public void speak(int volume) {
 System.out.println("Making random animal noise at volume: " + volume);
 }

 public void speak(String noiseType) {
 System.out.println("Making noise of type: " + noiseType);
 }
}

Note that methods that are overloaded can still be overridden. For example:

public class Animal {
 public void speak() {
 System.out.println("Random animal noise");
 }

 public void speak(int volume) {
 System.out.println("Making random animal noise at volume: " + volume);
 }

 public void speak(String noiseType) {
 System.out.println("Making noise of type: " + noiseType);
 }
}

public class Dog extends Animal {
 @Override
 public void speak() {
 System.out.println("Bark!");
 }

 @Override
 public void speak(int volume) {
 System.out.println("Barking at volume: " + volume);
 }

 // speak(String noiseType) gets inherited
}

� Main Points
Polymorphism allows for the same interface to be used to invoke methods on objects of
di�erent types so we can:

(1) reduce the amount of code that needs to be written and maintained, and

(2) make it easier to add new types of objects to the program

Method overriding is when a subclass overrides a method of its superclass by providing a
di�erent implementation.

Method overloading is when multiple methods of the same name have di�erent method
signatures.

Methods that are overloaded can still be overridden!

Inheritance Mystery [Background Reading]

A good way to assess your understanding of inheritance and polymorphism is to work through
inheritance mystery problems.

Consider the following code examples:

public class Husky extends Dog {
 public void method1() {
 System.out.print("Husky 1 ");
 }
 public String toString() {
 return "Husky " + super.toString();
 }
}
public class Animal {
 public void method1() {
 System.out.print("Animal 1 ");
 }
 public void method2() {
 System.out.print("Animal 2 ");
 }
 public String toString() {
 return "Animal";
 }
}
public class Pomeranian extends Dog {
 public void method1() {
 System.out.print("Pomeranian 1 ");
 }
}
public class Dog extends Animal {
 public void method2() {
 method1();
 System.out.print("Dog 2 ");
 }
 public String toString() {
 return "Dog";
 }
}

Now, given these classes, think about what output of the from the following client class would be:

public class Client {
 public static void main(String[] args) {
 Animal[] elements = {new Animal(), new Dog(), new Husky(), new Pomeranian()};
 for (int i = 0; i < elements.length; i++) {
 elements[i].method1();
 System.out.println();

 elements[i].method2();
 System.out.println();
 System.out.println(elements[i]);
 System.out.println();
 }
 }
}

To help us solve this problem, let's �rst draw out an inheritance tree:

In this inheritance tree, we can see that Husky is a Dog , Pomeranian is a Dog , and Dog is an
Animal .

Now, let's create a table to be a reference for what the output will be:

� Animal
First, let's consider the output of Animal . Since Animal is the base class there is no need look up in
our inheritance tree. Thus, we can simply map the output of each method into their respective
column:

� Dog

Next, let's consider the output of Dog . Here, since Dog does not implement method1() , it inherits
the method. Referencing our inheritance tree, we see that it will inherit method1() from Animal .
Next, we see in method2() that the method calls method1() and the prints Dog 2 . This is where
things can get tricky. You might be tempted to say that Dog 's method2 prints Animal 1 Dog 2 which
is correct. However, when you encounter a method call, you should avoid writing down the output in
the table:

Notice that in the method2 column that we do not immediately write down the output in the table.
This is because method calls are polymorphic so we have to call method1() on the actual type of
the object. This does not apply to super calls though as they are not polymorphic, which is why for a
call like super.toString() call, we just look above and copy the output from that table entry.

If you are still unsure as to why we put method1() Dog 2 , the next part should clarify it further.

 � Husky
Next, let's consider the output of Husky . Here, since Husky implements method1() , we can simply
copy that output. The more interesting observation though is that Husky does not implement
method2() . Thus, looking at our inheritance tree, Husky would inherit method2() from Dog .

 Finally, in the toString() method, we make a call to super.toString() which means we can
directly look above Husky in the inheritance tree to see what toString() method to reference. In
this case, we will reference Dog 's toString() method.

Notice that in the method2 column that we directly copy whatever Dog had in its method2 column.
This is why we needed to put method1() Dog 2 in Dog 's method2 column instead of Animal 1 Dog
2 . The actual output of Husky 's method2 is Husky 1 Dog 2 , not Animal 1 Dog 2 !

� Pomeranian
Finally, let's consider the output of Pomeranian . Since Pomeranian implements method1() , again,
we can simply copy that output. Since Pomeranian doesn't implement method2() , that will get
inherited. Refering the inheritance tree, we see that Pomeranian inherits Dog 's method2() .

Finally, since Pomeranian does not implement toString() , that method also gets inherited from
Dog !

� Final Output
Revisiting the client code:

public class Client {
 public static void main(String[] args) {
 Animal[] elements = {new Animal(), new Dog(), new Husky(), new Pomeranian()};
 for (int i = 0; i < elements.length; i++) {
 elements[i].method1();
 System.out.println();
 elements[i].method2();
 System.out.println();
 System.out.println(elements[i]);
 System.out.println();
 }
 }
}

We see now that the entire output would be as follows:

Animal 1
Animal 2

Animal

Animal 1
Animal 1 Dog 2
Dog

Husky 1
Husky 1 Dog 2
Husky Dog

Pomeranian 1
Pomeranian 1 Dog 2
Dog

� Main Points
Inheritance allows us to create a hierarchy of classes, where sub-classes inherit methods
from their super-classes.

 Sub-classes inherit methods from their super-classes.

If a subclass does not explicitly de�ne a method, it inherits that method from its super-
class.

Sub-classes can override methods inherited from super-classes.

The overridden method in the subclass takes precedence over the inherited one.

Polymorphism allows objects of di�erent types to be treated as objects of a common super-
class!

Drawing out an inheritance tree can help us track our polymorphism! :-)

